por Huovi » Sáb Abr 09, 2016 00:15
Como eu resolvo o lim x->1 (?x - 1)/(1 - x^1/3) ? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 10:35
Huovi escreveu:Como eu resolvo o
![\lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}}](/latexrender/pictures/b4a852b91dcd5a0994ce145d8c8a36da.png)
? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
Olá
Huovi, seja bem-vindo(a)!
Nesses limites devemos encontrar uma maneira de cancelar o fator que anula o denominador. Fazemos isso multiplicando-o pelo seu "conjugado".
Outro ponto a destacar é a fatoração. Note que

, por conseguinte
![(1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2}) (1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2})](/latexrender/pictures/21e3c21fc695982f70a4b0ddba7f6a00.png)
.
Daí,
![\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}} \\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}}](/latexrender/pictures/356d8dc301fca65965aba996fa730826.png)
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 10, 2016 17:40
Obrigada

só mais uma pergunta, por que multiplicou apenas o denominador por -1? não deveria ter multiplicado a fração toda não?
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 20:22
Não multipliquei por

. O que fiz foi o seguinte:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 24, 2016 01:12
Ahhhh, agora entendi. Agradeço

-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] limites no infinito com raízes
por camila_braz » Dom Jun 11, 2017 11:42
- 0 Respostas
- 2950 Exibições
- Última mensagem por camila_braz

Dom Jun 11, 2017 11:42
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites que tendem ao infinito com raízes
por Mell » Qua Mai 01, 2013 15:21
- 3 Respostas
- 2714 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 02:41
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3589 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Limites com duas raízes
por Atom » Dom Mai 25, 2014 20:22
- 1 Respostas
- 1905 Exibições
- Última mensagem por e8group

Dom Mai 25, 2014 21:59
Cálculo: Limites, Derivadas e Integrais
-
- Limites, conjugado de raizes
por moyses » Qui Out 06, 2011 12:16
- 19 Respostas
- 25059 Exibições
- Última mensagem por LuizAquino

Dom Out 09, 2011 19:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.