• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule f(x)

Calcule f(x)

Mensagempor kjelin » Ter Fev 02, 2016 01:39

Sabe-se que f??(x) = xlnx e que f?(1) = f(1) = 0. Calcule f(x).
kjelin
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Fev 02, 2016 01:13
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em química
Andamento: cursando

Re: Calcule f(x)

Mensagempor DanielFerreira » Seg Fev 08, 2016 16:47

Olá Kjelin, seja bem-vindo!

De acordo com o enunciado, f''(x) = x \cdot \ln x; se integrarmos cada lado da igualdade ficamos com f'(x) + c_1 = \int x \cdot \ln x \, dx.

Encontramos a função derivada primeira resolvendo a integral \int x \cdot \ln x \, dx por partes.

Considerando f(x) = \ln x e g'(x) = x dx temos que: f'(x) = \frac{1}{x} \, dx e g(x) = \frac{x^2}{2}.

\\ \int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx \\\\ (...) \\\\ \int x \cdot \ln x \, dx = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + c_2

Por conseguinte, f'(x) = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + c_2 - c_1.

Da condição f'(1) = 0, tiramos que c_2 - c_1 = \frac{1}{4}. Então, temos que: \boxed{f'(x) = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + \frac{1}{4}}.

A fim de encontrar a função f, aplicamos raciocínio análogo ao anterior; ou seja, integramos cada lado da igualdade...

\\ f(x) + c_3 = \int (\frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + \frac{1}{4}) \, dx \\\\\\ f(x) + c_3 = \frac{x^3 \cdot \ln x}{6} - \frac{x^3}{6} - \frac{x^3}{12} + \frac{x}{4} + c_4

Obs1.: o primeiro termo do integrando acima foi obtido aplicando uma nova integração por partes;
Obs2.: de f(1) = 0, tiramos que c_4 - c_3 = - \frac{1}{9}.

Por fim, concluímos que \boxed{\boxed{f(x) = \frac{x^3 \cdot \ln x}{6} - \frac{5x^3}{36} + \frac{x}{4} - \frac{1}{9}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.