• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites como resolver sem L'hospital

limites como resolver sem L'hospital

Mensagempor eulercx » Qui Jan 14, 2016 10:37

Área de transferência03.jpg
Área de transferência03.jpg (11.91 KiB) Exibido 3770 vezes
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: limites como resolver sem L'hospital

Mensagempor RuuKaasu » Qui Jan 14, 2016 18:29

a)(raiz³(8-2x+x²)-2)/(x-x²)
Primeiramente repare que raiz³(8-2x+x²)-2 é uma diferença de raízes cúbicas e pelo produto notável da diferença de cubos temos x³-y³=(x-y)(x²+xy+y²), agora substituiremos raiz³(8-2x+x²) por x e 2 por y
( 8-2x+x²) - 8 = ( raiz³( 8 - 2x + x² ) - 2 )*( raiz³( 8 - 2x + x² )² + raiz³( 8 - 2x + x² ) * 2 + 2² ), agora isolamos o termo (raiz³(8-2x+x²)-2)
( 2x+x² ) / ( raiz³( 8 - 2x + x² )² + raiz³(8-2x+x²) * 2 + 2² ) = ( raiz³( 8 - 2x + x² ) - 2 ), agora substituir o valor em (raiz³(8-2x+x²)-2)/(x-x²)
( 2x+x² ) /(x-x²) * ( raiz³( 8 - 2x + x² )² + raiz³( 8 - 2x + x² ) * 2 + 4 ), e agora é só "cortar" o x
( 2 + x ) /(1 - x) * ( raiz³( 8 - 2x + x² )² + raiz³( 8 - 2x + x² ) * 2 + 4 ), e agora resolver para x=0
2/12=1/6

As outras se resolvem da mesma forma soma de cubos x³+y³=(x+y)(x²-xy+x²) diferença x³-y³=(x-y)(x²+xy+y²), e você ira cortar sempre algo do tipo x-a, para x->a, quanto simplificar a indeterminação, se não conseguir fazer as outras é só falar.
RuuKaasu
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Dez 26, 2015 23:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)