• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] indeterminação de limites.

[Limites] indeterminação de limites.

Mensagempor draxdeveloper » Qui Dez 17, 2015 20:27

Olá, boa noite.
A questão pede para dar exemplos de limites que existem e limites que não existem nas seguintes indeterminações:
\frac{\infty}{\infty}
0 * \infty
\frac{0}{0}
\infty - \infty

Eu usei os seguintes limites, quero conferir se está certo:

limites \frac{\infty}{\infty}
Existe:
Está dando erro... Então vou colocar sem a tag tex, ele não está conseguindo fazer a fração de 2x/x
lim_{x\to\infty } \frac{2x}{x} = 0
Não existe:
lim_{x\to\infty }\frac{\sqrt{x}}{x}

limites 0 * \infty

Existe:
lim_{x\to\0 }\frac{1}{x} * x = 1
Não existe:
lim_{x\to\0 }\frac{\sqrt{x}}{x^2} * x

limites \frac{0}{0}
lim_{x\to\ {h} }\frac{\sqrt[2]{9 + h} - 3}{{h}}
lim_{x\to\ 0 }\frac{x^2 * {\sqrt{x}} }{x}

limites \infty - \infty
lim_{x\to\ \infty }\sqrt{x + 5} - \sqrt{x}
lim_{x\to\ \infty }x - \sqrt{x}

Novamente peço desculpas por não usar as tags, mas está dando erro para quase tudo que tento inserir (e funciona em outro editor)
draxdeveloper
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 17, 2015 19:10
Formação Escolar: GRADUAÇÃO
Área/Curso: BCMT
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}