por draxdeveloper » Qui Dez 17, 2015 20:27
Olá, boa noite.
A questão pede para dar exemplos de limites que existem e limites que não existem nas seguintes indeterminações:




-

Eu usei os seguintes limites, quero conferir se está certo:
limites

Existe:
Está dando erro... Então vou colocar sem a tag tex, ele não está conseguindo fazer a fração de 2x/x
lim_{x\to\infty } \frac{2x}{x} = 0
Não existe:
lim_{x\to\infty }\frac{\sqrt{x}}{x}
limites

Existe:
lim_{x\to\0 }\frac{1}{x} * x = 1
Não existe:
lim_{x\to\0 }\frac{\sqrt{x}}{x^2} * x
limites

lim_{x\to\ {h} }\frac{\sqrt[2]{9 + h} - 3}{{h}}
lim_{x\to\ 0 }\frac{x^2 * {\sqrt{x}} }{x}
limites

-

lim_{x\to\ \infty }\sqrt{x + 5} - \sqrt{x}
lim_{x\to\ \infty }x - \sqrt{x}
Novamente peço desculpas por não usar as tags, mas está dando erro para quase tudo que tento inserir (e funciona em outro editor)
-
draxdeveloper
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Dez 17, 2015 19:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: BCMT
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] indeterminação?
por rafaelbr91 » Ter Mar 27, 2012 18:48
- 3 Respostas
- 2071 Exibições
- Última mensagem por nietzsche

Ter Mar 27, 2012 19:31
Cálculo: Limites, Derivadas e Integrais
-
- Indeterminação de Limites
por dsidney30 » Sex Mai 03, 2013 15:53
- 1 Respostas
- 1450 Exibições
- Última mensagem por young_jedi

Dom Mai 05, 2013 19:07
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] - Indeterminação e Impossibilidade
por Scheu » Qui Fev 02, 2012 00:14
- 2 Respostas
- 3803 Exibições
- Última mensagem por Scheu

Sex Fev 03, 2012 00:03
Cálculo: Limites, Derivadas e Integrais
-
- Indeterminação limites fundamental
por Rosi7 » Sex Mai 22, 2015 11:49
- 3 Respostas
- 4581 Exibições
- Última mensagem por Jennicop

Ter Dez 22, 2015 03:20
Cálculo: Limites, Derivadas e Integrais
-
- Limites - Indeterminação do tipo 0X+infinito
por Pollyanna Moraes » Sáb Abr 28, 2012 15:04
- 1 Respostas
- 2847 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 09:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.