• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como fazer a derivada dessa função

como fazer a derivada dessa função

Mensagempor eulercx » Sáb Nov 14, 2015 10:27

f(x)=\frac{-{x}^{2}+1}{({x}^{2}+1)^2}
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Sáb Nov 14, 2015 20:08

Olá amigo, boa noite!

Repare que a função f é racional (dada por um quociente P(x)/Q(x)). Logo, nos é conveniente aplicar a Regra do Quociente! Para isto, fazemos:

f'(x) = P'(x) * Q(x) - Q'(x) * P(x)] / [Q(x)]²

A partir daí consegue concluir sozinho?

Caso queira conhecer o meu trabalho enquanto professor de Matemática, acesse: viewtopic.php?f=151&t=13614

Bons estudos
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Sáb Nov 14, 2015 21:09

já fiz pela regra do quociente, mas o resultado não bate com o do livro
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Sáb Nov 14, 2015 22:09

Sejam,

P(x) = -x² + 1

Q(x) = (x² + 1)²

Você está fazendo P'(x) = -2x e Q'(x) = 2(x² + 1)(2x)?

Por favor, poste o que você. Assim, eu comento onde está o seu erro (ou do gabarito).

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Dom Nov 15, 2015 22:09

\frac{-2x(x^2+1)^2+x^2-1*2(x^2+1)2x}{[(x^2+1)^2]^2}} =\frac{-2x(x^2+1)^2+x^2-1*4x(x^2+1)}{[(x^2+1)^2]^2}
Chego até aqui professor. A partir dai fico perdido e não chego no gabarito da questão que é:\frac{2x(x^2-3)}{(x^2+1)^3}
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Seg Nov 16, 2015 08:26

Eulercx, o erro está no numerador. O correto é:

f'(x)=\frac{(-2x)(x^2+1)^2-[2(x^2+1)(2x)](-x^2+1)}{(x^2+1)^4}

Sou professor de Matemática e posso lhe ajudar bastante em seus estudos. Caso tenha interesse em conhecer o meu trabalho, acesse: viewtopic.php?f=151&t=13614

Abraço e bons estudos.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Seg Nov 16, 2015 09:35

vlw :-D
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.