por Antonio H V Araujo » Sáb Nov 14, 2015 22:24
Como resolver esta questão. Existe outro raciocínio?
Seja a função f definida em [-3, 3] por g(x) =
![\sqrt[]{9 - {x}^{2}} \sqrt[]{9 - {x}^{2}}](/latexrender/pictures/34b3c74e236b641a99a8d2c0b8898f1a.png)
. Verifique se f é contínua nesse intervalo.
Resolução.
Determinando os limites laterais, temos:


[/tex]

Como queremos saber se é contínua no intervalo [-3, 3], consideramos apenas o limite de -3 pela direita e o limite de 3 pela esquerda, como os valores são iguais, e f(-3) = f(3) = 0, a função é contínua nesse intervalo. ok
-
Antonio H V Araujo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Nov 14, 2015 21:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em SI
- Andamento: cursando
por Cleyson007 » Seg Nov 16, 2015 07:29
Bom dia Antônio!
Seja bem-vindo ao AjudaMatemática
Uma outra forma de raciocínio seria enxergar que a função g(x) é uma composição de funções contínuas, repare que:

Repare que ? e ? são funções contínuas. Logo, a função g(x) também é contínua.
Caso queira conhecer o meu trabalho enquanto professor de Matemática, acesse:
viewtopic.php?f=151&t=13614Posso lhe ajudar bastante em seus estudos.
Abraço
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função continua
por Amparo » Dom Mar 09, 2008 16:14
- 1 Respostas
- 3829 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:52
Funções
-
- função continua
por alexandreredefor » Dom Jul 17, 2011 18:23
- 4 Respostas
- 3006 Exibições
- Última mensagem por Molina

Seg Jul 18, 2011 11:42
Cálculo: Limites, Derivadas e Integrais
-
- Função Contínua
por Ana Maria da Silva » Sex Mar 14, 2014 18:55
- 1 Respostas
- 1495 Exibições
- Última mensagem por Russman

Sáb Mar 15, 2014 10:45
Cálculo: Limites, Derivadas e Integrais
-
- [Função continua]
por stepg_ » Dom Set 14, 2014 13:41
- 1 Respostas
- 1564 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:27
Cálculo: Limites, Derivadas e Integrais
-
- Função contínua
por felipe_pereira96 » Qua Jan 27, 2016 12:17
- 1 Respostas
- 1688 Exibições
- Última mensagem por adauto martins

Qui Jan 28, 2016 10:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.