• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cáculo - Limites - função contínua num intervalo

Cáculo - Limites - função contínua num intervalo

Mensagempor Antonio H V Araujo » Sáb Nov 14, 2015 22:24

Como resolver esta questão. Existe outro raciocínio?

Seja a função f definida em [-3, 3] por g(x) = \sqrt[]{9 - {x}^{2}}. Verifique se f é contínua nesse intervalo.

Resolução.
Determinando os limites laterais, temos:

\lim_{x\rightarrow-3^{+}}g(x)=0



[/tex]

Como queremos saber se é contínua no intervalo [-3, 3], consideramos apenas o limite de -3 pela direita e o limite de 3 pela esquerda, como os valores são iguais, e f(-3) = f(3) = 0, a função é contínua nesse intervalo. ok
Antonio H V Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 14, 2015 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em SI
Andamento: cursando

Re: Cáculo - Limites - função contínua num intervalo

Mensagempor Cleyson007 » Seg Nov 16, 2015 07:29

Bom dia Antônio!

Seja bem-vindo ao AjudaMatemática :y:

Uma outra forma de raciocínio seria enxergar que a função g(x) é uma composição de funções contínuas, repare que:

\alpha(x)=\sqrt[]{x}

\beta(x)=9-x^2

Repare que ? e ? são funções contínuas. Logo, a função g(x) também é contínua.

Caso queira conhecer o meu trabalho enquanto professor de Matemática, acesse: viewtopic.php?f=151&t=13614

Posso lhe ajudar bastante em seus estudos.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59