por fabiocr93 » Ter Out 13, 2015 18:38
Olá. Estou com dúvida. Já vi outras resoluções por aqui e tentei seguir as solução adotadas mas não obtive êxito.
Este exercício é do Cálculo B, da Flemming, de número 2.L, da página 242.
Devo esboçar a região de integração e calcular a integral iterada seguinte:

A solução dada pelo livro é

.
O que fiz foi avaliar a região de integração e em seguida desenhar esta. Depois, avaliei a função módulo em questão e estabeleci os limites para os quais "o sinal troca".
Em seguida integrei para cada parte da função módulo e segui com a integral "de fora", mas obtive resposta 2. Tentei resolver pela HP 50g e obtive a resposta 1. A resposta está correta? Como devo resolver?
Segue imagem da minha resolução:

No Wolfram Alpha eu obtive a resposta correta. O que assegura que o livro está certo:
http://www.wolframalpha.com/share/clip? ... gjieqlrff9
-
fabiocr93
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Out 13, 2015 18:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil FEB-UNESP
- Andamento: cursando
por adauto martins » Sex Out 16, 2015 18:22
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral dupla (módulo entre os limites de integração)
por rubenesantos » Dom Ago 19, 2012 21:18
- 2 Respostas
- 4562 Exibições
- Última mensagem por rubenesantos

Qui Ago 23, 2012 19:29
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla
por DanielFerreira » Sex Mar 16, 2012 23:56
- 2 Respostas
- 2730 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 17, 2012 19:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 2
por DanielFerreira » Dom Mar 18, 2012 12:44
- 5 Respostas
- 3951 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 22:34
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 4
por DanielFerreira » Sex Abr 06, 2012 19:49
- 4 Respostas
- 2944 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 21:05
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 5
por DanielFerreira » Sex Abr 06, 2012 20:00
- 2 Respostas
- 1796 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 20:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.