• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questões de Derivada

Questões de Derivada

Mensagempor GabrielM93 » Dom Jun 14, 2015 02:24

1. A parábola y=x²+C deve ser tangente à reta y=x. Calcule C. (Obs.: tentei igualar a derivada do primeiro y igual a x, porém eu encontrarei a derivada de C', e não C)

2. Mostre que a reta normal, em qualquer ponto do círculo x²+y²=a² passa pela origem.

Obrigado.
GabrielM93
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 14, 2015 02:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Questões de Derivada

Mensagempor nakagumahissao » Sáb Jul 18, 2015 12:39

1. A parábola y=x²+C deve ser tangente à reta y=x. Calcule C.

Sabendo-se que a derivada da equação da parábola nos dará a inclinação da reta passando em qualquer ponto da parábola e sabendo-se também que esta inclinação deverá ser o mesmo que o da reta dada num determinado ponto, tem-se que:

y = x^2 + C \Rightarrow \frac{dy}{dx} = 2x

y = x \Rightarrow \frac{dy}{dx} = 1

Logo,

2x = 1 \Rightarrow x = \frac{1}{2}

A reta tocará na parábola quando x for 1/2 e y for 1/2, ou seja, no ponto (1/2, 1/2). Usando estes valores na equação da parábola teremos:

y = x^2 + C \Rightarrow \frac{1}{2} = \left(\frac{1}{2} \right) ^2 + C

\frac{1}{2} - \frac{1}{4} = C \Rightarrow  C = \frac{2-1}{4} \Rightarrow C = \frac{1}{4}

Assim a equação da parábola ficará:

y = x^2 + \frac{1}{4}


2. Mostre que a reta normal, em qualquer ponto do círculo x²+y²=a² passa pela origem.

Usando o cálculo 2, mais precisamente o conceito de Gradiente, tem-se que:

z = x^2 + y^2 - a^2

\nabla z = \frac{\partial z}{\partial x}i + \frac{\partial z}{\partial y}i

\nabla z = 2xi + 2yj

Que por sua vez são as próprias retas x e y que sempre passam por (0,0) como queríamos demonstrar.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}