• Anúncio Global
    Respostas
    Exibições
    Última mensagem

L'Hôpital - Por que o limite não existe?

L'Hôpital - Por que o limite não existe?

Mensagempor tiago_28 » Ter Mai 19, 2015 20:10

Aplicando a Regra de L'Hôpital no limite abaixo estou encontrando \frac {-1}{3}, mas o gabarito informa que o limite não existe

\lim_{x\rightarrow0} \frac {ln(1+x) - x - \frac{x^2}{2} - \frac{x^3}{6}} {x^3}

Como mostrar que esse limite não existe? Lembrando que preciso calcular isso usando L'Hôpital.
tiago_28
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 19, 2015 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

y

Mensagempor lucas7 » Qua Mai 20, 2015 20:45

Aplicando L'Hopital, a primeira derivada dessa função é:
d/dx((log(1+x)-x-x^2/2-x^3/6)/x^3) = (x (x^2+5 x+6)-6 (x+1) log(x+1))/(2 x^4 (x+1))

derivando de novo:
d/dx((x (x^2+5 x+6)-6 (x+1) log(x+1))/(2 x^4 (x+1))) = (12 (x+1)^2 log(x+1)-x (x^3+8 x^2+20 x+12))/(x^5 (x+1)^2)

sucessivamente:
d/dx((12 (x+1)^2 log(x+1)-x (x^3+8 x^2+20 x+12))/(x^5 (x+1)^2)) = (x (3 x^4+33 x^3+128 x^2+156 x+60)-60 (x+1)^3 log(x+1))/(x^6 (x+1)^3)

Assim, verifica-se que mesmo aplicando L'Hopital inúmeras vezes esse limite tende a um quociente de zeros. (Pois sempre haverá x no numerador e denominador)
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: