• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada como resolver

Derivada como resolver

Mensagempor neoreload » Dom Mai 10, 2015 07:36

Como resolver essa:

Se w = cos(x ? y) + ln(x + y) , mostre que: Imagem

Infelizmente não tenho a resposta dessa.
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada como resolver

Mensagempor nakagumahissao » Qua Out 07, 2015 09:53

De acordo com as regras do site, você deveria ter colocado junto com o enunciado, tudo o que já tinha tentado fazer para resolver o problema e postar também em que ponto a dúvida surgiu e que dúvida era. Creio que por causa disso, acabou ficando sem uma resposta para a sua postagem. Na próxima vez, por favor não se esqueça de seguir o regulamento para não acontecer isto novamente.

Resolvendo seu problema agora, se ainda estiver interessado.

RESOLUÇÃO:

Basta que utilizemos as derivadas parciais primeira e segunda sobre a equação dada e mostrar que a diferença entre eles dará zero.

Assim, tirando as derivadas parciais primeira de w tem-se que:

w = \cos (x-y) + \ln (x + y)

\frac{\partial w}{\partial x} = -\sin (x - y) + \frac{1}{x + y}

\frac{\partial w}{\partial y} = \sin (x - y) + \frac{1}{x + y}


As segundas derivadas serão:

\frac{\partial^{2} w}{\partial x^{2}} = -\cos (x-y) - \frac{1}{(x+y)^{2}}

\frac{\partial^{2} w}{\partial y^{2}} = -\cos (x-y) - \frac{1}{(x+y)^{2}}

Assim, finalmente,

\frac{\partial^{2} w}{\partial x^{2}} - \frac{\partial^{2} w}{\partial y^{2}} = \left(-\cos (x-y) - \frac{1}{(x+y)^{2}} \right) - \left(-\cos (x-y) - \frac{1}{(x+y)^{2}} \right)

\frac{\partial^{2} w}{\partial x^{2}} - \frac{\partial^{2} w}{\partial y^{2}} = 0

Como queríamos demonstrar. \blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.