• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gostaria de saber como calcular o seguinte limite

Gostaria de saber como calcular o seguinte limite

Mensagempor felipe_08 » Qui Abr 23, 2015 17:36

Gostaria de saber, passo a passo, como calcular o seguinte limite:

\lim_{x\rightarrow0}\frac{(1+x)^5-(1+5x)}{x^5+x^2}

Eu tentei dividir toda a equação por x^5, que tem maior expoente no denominador, mais acabou dando uma soma de infinitos e não conseguir terminar. A resposta desse limite é 10, só gostaria de saber como chegar a esse resultado.
felipe_08
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 23, 2015 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Gostaria de saber como calcular o seguinte limite

Mensagempor nakagumahissao » Qui Abr 23, 2015 20:08

Usando o triângulo de Pacal para n = 5 em

{(1+x)}^{5}

Teremos:

{(1+x)}^{5}= 1\cdot{1}^{0}{x}^{5} + 5\cdot{1}^{1}{x}^{4}+10\cdot{1}^{2}{x}^{3}+10\cdot{1}^{3}{x}^{2} + 5\cdot{1}^{4}{x}^{1} + 1\cdot{1}^{5}{x}^{0}

{(1+x)}^{5}= = {x}^{5} + 5{x}^{4}+10{x}^{3}+10{x}^{2} + 5x + 1

E a fração ficará da seguinte forma:

\frac{{(1+x)}^{5} - (1+5x)}{x^5 + x^2} = \frac{{x}^{5} + 5{x}^{4}+10{x}^{3}+10{x}^{2} + 5x + 1 - 1 - 5x}{{x}^{2}\left({x}^{3} + 1 \right)}=

= \frac{{x}^{5} + 5{x}^{4}+10{x}^{3}+10{x}^{2}}{{x}^{2}\left({x}^{3} + 1 \right)} =

= \frac{{x}^{2}\left({x}^{3} + 5{x}^{2}+10x+10 \right)}{{x}^{2}\left({x}^{3} + 1 \right)} = \frac{{x}^{3} + 5{x}^{2}+10x+10}{{x}^{3} + 1}

Agora, por fim, podemos calcular o limite dado:

\lim_{x\rightarrow 0}\frac{{\left(1+x \right)}^{5} - (1 + 5x)}{{x}^{5} + {x}^{2}} = \lim_{x\rightarrow 0}\frac{{x}^{3} + 5{x}^{2}+10x+10}{{x}^{3} + 1} =

= \frac{0 + 0+0+10}{0 + 1} = \frac{10}{1} = 10
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Gostaria de saber como calcular o seguinte limite

Mensagempor felipe_08 » Qui Abr 23, 2015 22:51

Muito obrigado.
felipe_08
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 23, 2015 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}