• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] Demonstrando um limite pela definição

[limite] Demonstrando um limite pela definição

Mensagempor lucasvier4 » Qui Abr 16, 2015 22:46

Boa noite, gente.
Eu gostaria de saber, por gentileza, como é que posso demonstrar pela definição de limite o seguinte:
\lim_{x->2} {x}^{3} = 8

Quando eu tento, paro na seguinte parte: |x - 2| < \delta => |x-2||{x}^{2}+2x+4|<\epsilon
Daí fazendo |{x}^{2}+2x+4|< M, chego à conclusão que \delta =\epsilon/M, mas a partir daí não sei como proceder quanto à equação do segundo grau... alguém pode me mostra como fazer essa?
lucasvier4
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 16, 2015 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia naval
Andamento: cursando

Re: [limite] Demonstrando um limite pela definição

Mensagempor adauto martins » Sáb Abr 18, 2015 12:25

dado \epsilon \succ 0,\exists \delta \succ 0,tal q. 0\prec \left|x-2 \right|\prec \delta \Rightarrow \left|{x}^{3}-8 \right|\prec \varepsilon,aqui e procurar um \delta=\delta(\epsilon)q. satisfaz a definiçao...entao:
\left|{x}^{3}-8 \right|=\left|(x-2)({x}^{2}+2x+4 \right|\preceq \left|x-2 \right|.\left|{x}^{2}+2x+4 \right|\prec \delta.\left|{x}^{2} +x+4\right|,como \delta =min{{\delta}_{1},{\delta}_{2},...{\delta}_{n}},ou seja ha inumeros deltas q. podem satisfazer o valor de epsilon,entao vamos tomar \epsilon =4\delta...logo...
\left|{x}^{3}-8 \right|\preceq \left|x-2 \right|\left|{x}^{2}+2x+4 \right|\prec \delta.\left|{x}^{2}+2x+4 \right|\prec \delta.4=\epsilon
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: