• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] Demonstrando um limite pela definição

[limite] Demonstrando um limite pela definição

Mensagempor lucasvier4 » Qui Abr 16, 2015 22:46

Boa noite, gente.
Eu gostaria de saber, por gentileza, como é que posso demonstrar pela definição de limite o seguinte:
\lim_{x->2} {x}^{3} = 8

Quando eu tento, paro na seguinte parte: |x - 2| < \delta => |x-2||{x}^{2}+2x+4|<\epsilon
Daí fazendo |{x}^{2}+2x+4|< M, chego à conclusão que \delta =\epsilon/M, mas a partir daí não sei como proceder quanto à equação do segundo grau... alguém pode me mostra como fazer essa?
lucasvier4
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 16, 2015 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia naval
Andamento: cursando

Re: [limite] Demonstrando um limite pela definição

Mensagempor adauto martins » Sáb Abr 18, 2015 12:25

dado \epsilon \succ 0,\exists \delta \succ 0,tal q. 0\prec \left|x-2 \right|\prec \delta \Rightarrow \left|{x}^{3}-8 \right|\prec \varepsilon,aqui e procurar um \delta=\delta(\epsilon)q. satisfaz a definiçao...entao:
\left|{x}^{3}-8 \right|=\left|(x-2)({x}^{2}+2x+4 \right|\preceq \left|x-2 \right|.\left|{x}^{2}+2x+4 \right|\prec \delta.\left|{x}^{2} +x+4\right|,como \delta =min{{\delta}_{1},{\delta}_{2},...{\delta}_{n}},ou seja ha inumeros deltas q. podem satisfazer o valor de epsilon,entao vamos tomar \epsilon =4\delta...logo...
\left|{x}^{3}-8 \right|\preceq \left|x-2 \right|\left|{x}^{2}+2x+4 \right|\prec \delta.\left|{x}^{2}+2x+4 \right|\prec \delta.4=\epsilon
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}