• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite com raízes] - É possível calcular sem usar l'Hopital

[Limite com raízes] - É possível calcular sem usar l'Hopital

Mensagempor Brunorp » Ter Mar 31, 2015 21:54

\lim_{x\rightarrow+\infty}\frac{\sqrt[]{{x}^{2}-3}}{\sqrt[3]{{x}^{3}+1}}
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limite com raízes] - É possível calcular sem usar l'Hop

Mensagempor adauto martins » Qui Abr 02, 2015 19:26

L=\lim_{x\rightarrow \infty}x\sqrt[]{1-3/{x}^{2}}/x\sqrt[3]{1+1/{x}^{3}}=\lim_{x\rightarrow\infty}\sqrt[]{1-3/{x}^{2}}/\sqrt[3]{1+1/{x}^{3}}=1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)