por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
Seja
![f(x)= [cos x], -\pi \leq x \leq \pi f(x)= [cos x], -\pi \leq x \leq \pi](/latexrender/pictures/6d2672b0e6524334517a98ed45e26c9b.png)
. (Os colchetes simbolizam a função piso)
a) Calcule cada limite, se existir.
I)

II)

III)

IV)

b) Para quais valores de a existe

?
Sei que a função maior inteiro representa o maior inteiro que não ultrapasse o valor de X mas não consigo responder essa questão e não tenho o gabarito. Obrigado desde já!
-
ViniciusAlmeida
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Seg Fev 09, 2015 12:13
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por adauto martins » Qua Fev 18, 2015 10:56
![f(x)=cosx\Rightarrow \left[f(x) \right]=\left[cosx \right] f(x)=cosx\Rightarrow \left[f(x) \right]=\left[cosx \right]](/latexrender/pictures/a6654b1aa87894edcc9dbcc4ac19a9a8.png)
por definiçao temos:
![\left[f(x) \right]\preceq \left[f(x) \right]\prec \left[f(x) \right]+1,p/\left[f(x) \right]\in Z \left[f(x) \right]\preceq \left[f(x) \right]\prec \left[f(x) \right]+1,p/\left[f(x) \right]\in Z](/latexrender/pictures/55ba575bf9c1de38cf4f8c6731589961.png)
,entao
![\left[cox \right]\preceq cosx \prec \left[cosx \right]+1 \left[cox \right]\preceq cosx \prec \left[cosx \right]+1](/latexrender/pictures/13ee90b3145aa84f4c0c9ced41d2a821.png)
logo...I)
![\lim_{x\rightarrow 0}\left[cosx \right]\preceq \lim_{x\rightarrow 0}cosx\prec \lim_{x\rightarrow 0}cosx+1\Rightarrow \lim_{x\rightarrow 0}\left[cosx \right]=cos0=1 \lim_{x\rightarrow 0}\left[cosx \right]\preceq \lim_{x\rightarrow 0}cosx\prec \lim_{x\rightarrow 0}cosx+1\Rightarrow \lim_{x\rightarrow 0}\left[cosx \right]=cos0=1](/latexrender/pictures/b13c775b7b0b4405b61dc46eaba3a38e.png)
II)
![\lim_{x\rightarrow {\pi/2}^{-}}\left[cosx \right]\preceq \lim_{x\rightarrow {\pi/2}^{-}}cosx=cos(\pi/2)=0 \lim_{x\rightarrow {\pi/2}^{-}}\left[cosx \right]\preceq \lim_{x\rightarrow {\pi/2}^{-}}cosx=cos(\pi/2)=0](/latexrender/pictures/6612b303fba0eb51c8b1adf775a0e002.png)
...
o mesmo valor p/III,IV
b)por definiçao

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Fev 19, 2015 15:01
uma correçao:
nao existe o
![\lim_{x\rightarrow a}\left[f(x) \right] \lim_{x\rightarrow a}\left[f(x) \right]](/latexrender/pictures/b9cfe93e359820cd9c7df3519c27f248.png)
,pois p/diferentes valores de x,o limite tem o mesmo valor...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6470 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]-Função maior inteiro
por antonioferro » Sáb Fev 13, 2016 15:25
- 0 Respostas
- 1948 Exibições
- Última mensagem por antonioferro

Sáb Fev 13, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4550 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1534 Exibições
- Última mensagem por DanielFerreira

Sex Abr 17, 2015 20:32
Funções
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1547 Exibições
- Última mensagem por adauto martins

Seg Abr 20, 2015 20:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.