por Fernandobertolaccini » Ter Fev 03, 2015 12:43
Se

, calcular

ao longo das retas que ligam sucessivamente os pontos (0,0,0) , (0,0,1) , (0,1,1) , (2,1,1)
Resp: 10
Como fazer ?
Obrigado !!
-
Fernandobertolaccini
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qui Mai 01, 2014 10:27
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por Russman » Ter Fev 03, 2015 19:07
O primeiro passo é calcular o rotacional do campo vetorial em questão. Se o mesmo for nulo para qualquer ponto

então a a integral de linha terá um valor independente do caminho. Infelizmente, não é o caso. Então, primeiramente, calcule o produto interno

onde

.
Obteremos

.
Agora, o caminho é dividido em 3 partes. Assim,

onde cada caminho

é a reta que liga os pontos consecutivos.
Como as retas são em 3D o melhor caminho é parametrizá-las. A primeira, deve passar por (0,0,0) e (0,0,1). Assim, uma boa parametrização seria

.
Daí,
![\int_{C_1} \overrightarrow{A} \cdot \overrightarrow{ \mathrm{d}r} = \int_{0}^{1} \left [(2y(t)+3) dx(t) + x(t)z(t) dy(t) + (y(t)z(t)-x(t)) dz(t) \right ] = 0 \int_{C_1} \overrightarrow{A} \cdot \overrightarrow{ \mathrm{d}r} = \int_{0}^{1} \left [(2y(t)+3) dx(t) + x(t)z(t) dy(t) + (y(t)z(t)-x(t)) dz(t) \right ] = 0](/latexrender/pictures/ce74f329fd5cbc8147f24173fc44095f.png)
.
A parametrização para o próximo caminho pode ser

de modo que a integral C_2 também será nula.
Já para o caminho C_3 temos

de modo que
![\int_{C_3} \overrightarrow{A} \cdot \overrightarrow{ \mathrm{d}r} = \int_{0}^{2} \left [(2y(t)+3)\ dx(t) + x(t)z(t) \ dy(t) + (y(t)z(t)-x(t)) \ dz(t) \right ] = \int_{C_3} \overrightarrow{A} \cdot \overrightarrow{ \mathrm{d}r} = \int_{0}^{2} \left [(2y(t)+3)\ dx(t) + x(t)z(t) \ dy(t) + (y(t)z(t)-x(t)) \ dz(t) \right ] =](/latexrender/pictures/ab052c79629b01233e8ffd8b33b0ef33.png)

.
O único caminho que contribui para a integral é o último.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo vetorial, integrais de linha e Teorema de green
por Fernandobertolaccini » Qui Jun 11, 2015 20:19
- 0 Respostas
- 2301 Exibições
- Última mensagem por Fernandobertolaccini

Qui Jun 11, 2015 20:19
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha - Trabalho
por Bruhh » Ter Jul 05, 2011 16:55
- 1 Respostas
- 3321 Exibições
- Última mensagem por LuizAquino

Ter Jul 05, 2011 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo] Integral de linha
por pedro22132938 » Sex Dez 30, 2016 01:28
- 3 Respostas
- 7106 Exibições
- Última mensagem por adauto martins

Seg Jan 02, 2017 15:14
Cálculo: Limites, Derivadas e Integrais
-
- dúvida de cálculo 3 - integral de linha
por peridotito » Sex Nov 20, 2020 22:26
- 0 Respostas
- 5848 Exibições
- Última mensagem por peridotito

Sex Nov 20, 2020 22:26
Cálculo: Limites, Derivadas e Integrais
-
- Notação Calculo Combinatorio
por joaofonseca » Qua Jan 11, 2012 20:36
- 3 Respostas
- 1967 Exibições
- Última mensagem por Arkanus Darondra

Qua Jan 11, 2012 21:49
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.