por lucas_carvalho » Ter Dez 02, 2014 20:27
Boa noite!
Estou com dúvidas nessa questão retirada do livro "Cálculo" de James Stewart, 7° edição:
Suponha que uma bola de neve derreta de maneira que seu volume decresce a uma taxa proporcional a área de sua superfície. Se levar três horas para a bola de neve derreter para a metade de seu volume original, quanto tempo demorará para a bola de neve derreter completamente?
Obrigado pela atenção

-
lucas_carvalho
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Dez 02, 2014 20:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia química
- Andamento: formado
por adauto martins » Qua Dez 03, 2014 20:09

...como

...

,ou melhor

...

...ai agora e colocar os dados e calcular...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por lucas_carvalho » Qua Dez 03, 2014 20:53
Eu pensei nessa forma de resolução, mas ele não dá nenhum dado além do que eu passei aqui. E a resposta dada no final do livro é 11/2 h
-
lucas_carvalho
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Dez 02, 2014 20:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia química
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Taxa de variação
por felipe_ad » Ter Jun 29, 2010 19:44
- 2 Respostas
- 27452 Exibições
- Última mensagem por Guill

Ter Fev 21, 2012 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de variação
por AlbertoAM » Sáb Mai 21, 2011 14:23
- 1 Respostas
- 3983 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 13:03
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de Variação
por AlbertoAM » Sáb Mai 28, 2011 15:53
- 10 Respostas
- 8924 Exibições
- Última mensagem por AlbertoAM

Ter Mai 31, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- [Variação Percentual]
por Wilson Rogerio Braun » Sex Ago 26, 2011 21:29
- 4 Respostas
- 3975 Exibições
- Última mensagem por Wilson Rogerio Braun

Seg Ago 29, 2011 13:59
Álgebra Elementar
-
- Taxa de Variação
por Pollyanna Moraes » Sáb Out 22, 2011 17:37
- 1 Respostas
- 7758 Exibições
- Última mensagem por LuizAquino

Dom Out 23, 2011 10:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.