• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas-taxas de variação

Derivadas-taxas de variação

Mensagempor lucas_carvalho » Ter Dez 02, 2014 20:27

Boa noite!
Estou com dúvidas nessa questão retirada do livro "Cálculo" de James Stewart, 7° edição:
Suponha que uma bola de neve derreta de maneira que seu volume decresce a uma taxa proporcional a área de sua superfície. Se levar três horas para a bola de neve derreter para a metade de seu volume original, quanto tempo demorará para a bola de neve derreter completamente?

Obrigado pela atenção :)
lucas_carvalho
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Dez 02, 2014 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia química
Andamento: formado

Re: Derivadas-taxas de variação

Mensagempor adauto martins » Qua Dez 03, 2014 20:09

dV/dt=k.S\Rightarrow utilizar a regra da caeia p/dV/dt= (dV/dS).(dS/dt)=k.S\Rightarrow...como V=(4/3)\pi{r}^{3}=(4\pi{r}^{2})(r/3)=S.(r/3)\Rightarrow dV/dS=r/3\Rightarrow...(r/3)dS/dt=k.S\Rightarrow dS/S=(3.k/r).dt\Rightarrow lnS=(3k/r)t\Rightarrow S={e}^{(3k/r).t},ou melhor S=3.V/r...V-{V}_{0}=(r/3){e}^{(3.k/r).(t-{t}_{0}})...ai agora e colocar os dados e calcular...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivadas-taxas de variação

Mensagempor lucas_carvalho » Qua Dez 03, 2014 20:53

Eu pensei nessa forma de resolução, mas ele não dá nenhum dado além do que eu passei aqui. E a resposta dada no final do livro é 11/2 h
lucas_carvalho
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Dez 02, 2014 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.