• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[cálculo II] vetor gradiente e derivada direcional

[cálculo II] vetor gradiente e derivada direcional

Mensagempor natanaelskt » Sex Nov 28, 2014 21:09

eai pessoal,tudo bem? alguém pode me ajudar nesta dúvida teórica?
a-) encontre a direção que cresce mais rapidamente da função f(x,y) = ((x^2)/2)+ (y^2)/2) no ponto(1,1).
eu fiz assim,mas não entendo porque meu raciocínio ta errado.

f(x,y) = ((x^2)/2)+ (y^2)/2)
grad f = (1,1)
Duf = grad f * u
mas grad f*u = |grad f| * |u| * cosB e cosB é zero(maior crescimento)
|u| = 1 (vetor unitario)
assim: u = |grad f| / grad f assim eu acharia u e depois eu só jogava na formula Duf = grad f * u e dava a direção.(paralelo a grad f).

mas no livro tá diferente,ta assim: u = grad f / |grad f|
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [cálculo II] vetor gradiente e derivada direcional

Mensagempor adauto martins » Sáb Nov 29, 2014 12:13

f(x,y)=({x}^{2}/2)+({y}^{2}/2)...\Lambda f(x,y)=(\partial f/\partial x).{e}_{1}+(\partial f/\partial y).{e}_{2},onde
{{e}_{1},{e}_{2}} e a base canonica do {\Re}^{2}e \Lambda fe o gradiente de f(x,y)...
entao:
\Lambda f(x,y)=(\partial (({x}^{2}/2)+({y}^{2}/2)).{e}_{1}+(\partial  ({x}^{2}/2)+({y}^{2}/2)).{e}_{2}=x.{e}_{1}+y.{e}_{2}\Rightarrow \Lambda f(1,1)=1.{e}_{1}+1.{e}_{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}