• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações Diferenciais] Exercício URGENTE!

[Equações Diferenciais] Exercício URGENTE!

Mensagempor lucasfbfb » Seg Nov 17, 2014 10:36

Tou precisando fazer a questão a baixo e sinceramente não sei se o método que eu fiz esta certo. Eu estou desesperado, pf me ajudem!!!

De acordo com a lei de parento da economia, a taxa de variação (negativa) do número de pessoas P em uma economia estável que tem uma renda de pelo menos x reais é inversamente proporcional à renda dessas pessoas. Expresse esta lei como uma equação diferencial e resolva a equação para obter a função P(x).

minha ultima resolução o resultado deu -C/x^2, sendo c uma constante
lucasfbfb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 17, 2014 10:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Equações Diferenciais] Exercício URGENTE!

Mensagempor nakagumahissao » Seg Nov 17, 2014 10:50

lucasfbfb,


Essa não tenho total certeza, mas de acordo com o enunciado do problema:

-\frac{dP}{dx} = \frac{1}{x} \Leftrightarrow \frac{dP}{dx} = -\frac{1}{x}\Leftrightarrow dP = -\frac{1}{x}dx \Rightarrow \int_{}^{}P = \int_{}^{}-\frac{1}{x}dx \Leftrightarrow

\Leftrightarrow  \int_{}^{}P = \int_{}^{}-\frac{1}{x}dx \Leftrightarrow \int_{}^{}P = -\int_{}^{}\frac{1}{x}dx \Rightarrow P = -ln\left|x \right| + C

Assim, a função procurada é:

P(x) = -ln\left|x \right| + C

Se alguém puder me informar se esta solução está correta, agradeço desde já.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Equações Diferenciais] Exercício URGENTE!

Mensagempor lucasfbfb » Seg Nov 17, 2014 15:23

nakagumahissao escreveu:lucasfbfb,


Essa não tenho total certeza, mas de acordo com o enunciado do problema:

-\frac{dP}{dx} = \frac{1}{x} \Leftrightarrow \frac{dP}{dx} = -\frac{1}{x}\Leftrightarrow dP = -\frac{1}{x}dx \Rightarrow \int_{}^{}P = \int_{}^{}-\frac{1}{x}dx \Leftrightarrow

\Leftrightarrow  \int_{}^{}P = \int_{}^{}-\frac{1}{x}dx \Leftrightarrow \int_{}^{}P = -\int_{}^{}\frac{1}{x}dx \Rightarrow P = -ln\left|x \right| + C

Assim, a função procurada é:

P(x) = -ln\left|x \right| + C

Se alguém puder me informar se esta solução está correta, agradeço desde já.


Fiz como sua metodologia então seria assim?

\frac{1}{x}\Rightarrow dx=-\frac{1}{{x}^{2}}

P= \frac{1}{x} \Leftrightarrow dP = \frac{-1}{{x}^{2}}dx \Leftrightarrow \int_{}^{} P = - \int_{}^{} \frac{1}{{x}^{2}}dx \Leftrightarrow -\int_{}^{} {x}^{-2}dx \Leftrightarrow -{x}^{-1} + c

{x}^{-1} \Rightarrow dx = {x}^{-2}
lucasfbfb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 17, 2014 10:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}