• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas Trigonométricas

Derivadas Trigonométricas

Mensagempor Gustavooguto » Qua Nov 05, 2014 17:33

Boa tarde galera preciso de uma ajuda para derivar essa equação

f(x)=\sqrt[]{x} * (2Senx + {x}^{2})

obrigado
Gustavooguto
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Set 17, 2014 10:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivadas Trigonométricas

Mensagempor Russman » Qua Nov 05, 2014 23:19

Isto é uma função e não uma equação! Cuidado.

Primeiro, você aplica a regra do produto. Note que a sua função é f(x) = g(x) h(x) ,onde g(x) = \sqrt{x} e h(x) = (2 \sin(x) + x^2). Concorda? Então, a derivada da função f(x) ,que vamos denotar por f'(x), é

f'(x) = g'(x) h(x) + g(x) h'(x)

A famosa " Derivada-da-primeira-vezes-a-segunda-mais-a-primeira-vezes-a-derivada-da-segunda". Você já deve ter visto essa fórmula.

Daí, como g'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}}, então

f'(x) = \frac{1}{2\sqrt{x}} (2 \sin(x) + x^2) + \sqrt{x} (2 \sin(x) + x^2)'

Agora, como a derivada de uma soma é a soma das derivadas, fazemos

(2 \sin(x) + x^2)' = (2 \sin(x))' + (x^2)' = 2 \cos(x) + 2x

e então,

f'(x) = \frac{1}{2\sqrt{x}} (2 \sin(x) + x^2) + \sqrt{x}(2 \cos(x) + 2x)

Ok? Agora pode rearranjar os termos se quiser.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59