• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limite Indeterminado 0/0

[Limite] Limite Indeterminado 0/0

Mensagempor viniciushenrique1995 » Qui Out 30, 2014 23:22

Como consigo resolver o limite abaixo (sem usar a regra de L'Hôspital):

Observação: A resposta é 1/2.
Anexos
CodeCogsEqn (1).gif
CodeCogsEqn (1).gif (688 Bytes) Exibido 1463 vezes
viniciushenrique1995
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Out 28, 2014 00:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Graduação em Engenharia de Computação
Andamento: cursando

Re: [Limite] Limite Indeterminado 0/0

Mensagempor young_jedi » Sáb Nov 01, 2014 11:34

é possivel resolver utilizando a expansão da função exponencial em serie de taylor

e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots


\lim_{x\to 0}\frac{e^x-x-1}{x(e^x-1)}

\lim_{x\to 0}\frac{-x-1+1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots}{x(-1+1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots)}

\lim_{x\to 0}\frac{\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots}{x(x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots)}

\lim_{x\to 0}\frac{\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots}{x^2(1+\frac{x}{2!}+\frac{x^2}{3!}+\frac{x^3}{4!}+\dots)}

\lim_{x\to 0}\frac{\frac{1}{2!}+\frac{x}{3!}+\frac{x^2}{4!}+\dots}{(1+\frac{x}{2!}+\frac{x^2}{3!}+\frac{x^3}{4!}+\dots)}=\frac{\frac{1}{2}}{1}=\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Limite Indeterminado 0/0

Mensagempor adauto martins » Sáb Nov 01, 2014 14:34

tambem pode-se fazer usando esse limite fundamental,sai tbem...\lim_{x\rightarrow\infty}({1+(1/n)})^{n}=e...
fazendo...\lim_{x\rightarrow\infty}({1+(1/x)})^{x}=\lim_{u\rightarrow }(({1+u})^{1/u})=e...logo
faz.u={e}^{x}-1,x=ln(u+1),x\rightarrow\infty e u\rightarrow0\RightarrowL=\lim_{u\rightarrow0}(u-ln(u+1)/(u.ln(u+1))...alguns algebrismos,chega-se ao valor...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)