por jeison87 » Seg Set 22, 2014 21:11
deve se construir um deposito retangular sem tampa com volume v= 24 m^3. o custo por m^2 do material utilizado é de R$ 600 para m^2 do fundo, R$ 450 o m^2 para dois lados opostos e R$ 300 o m^2 para os lados restantes.determine as dimensoes do deposito que minimizam os custos.
cheguei em um sistema de 3 equacoes e tentei varias formas mas consido resolver.mais consegui por diferenciais so que tem que ser por langrange. segue até aonde eu cheguei:
(1) 600Y +900Z = ?.YZ (2) 600Z + 600X=?.XZ
(3) 600Y +900X=?.XY
respostas obtidas por diferenciais: X= 2,51 Y= 3,78 Z= 2,52
des de ja agradeço pela atenção
-
jeison87
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Set 22, 2014 20:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eng. elétrica
- Andamento: cursando
por adauto martins » Qua Out 08, 2014 16:06
ate onde vc fez,teremos entao:
600y+900z=

yz,
600z+600x=

xz,
600y+900x=

xy,
xyz=24
multiplicando as equaçoes por x,y,e z tal q. xyz=24,teremos:
600yx+900xz=24

,600zy+600xy=24

,600yz+900xz=24

...igualando as equaçoes e resolvendo em funçao das variaveis x,y,z e

...chega-se a resposta...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Multiplicadores de Lagrange
por Zkz » Sex Jun 05, 2009 21:00
- 0 Respostas
- 1855 Exibições
- Última mensagem por Zkz

Sex Jun 05, 2009 21:00
Cálculo: Limites, Derivadas e Integrais
-
- Multiplicadores de Lagrange
por luciamoura » Sex Nov 26, 2010 17:55
- 0 Respostas
- 1665 Exibições
- Última mensagem por luciamoura

Sex Nov 26, 2010 17:55
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:01
- 1 Respostas
- 1378 Exibições
- Última mensagem por timoteo

Dom Jan 13, 2013 23:07
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:04
- 1 Respostas
- 1399 Exibições
- Última mensagem por Russman

Dom Jan 13, 2013 22:12
Cálculo: Limites, Derivadas e Integrais
-
- Máximos e mínimos (Lagrange)
por Danilo » Qui Mai 29, 2014 21:23
- 0 Respostas
- 963 Exibições
- Última mensagem por Danilo

Qui Mai 29, 2014 21:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.