• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por frações parciais

Integral por frações parciais

Mensagempor Fernandobertolaccini » Seg Jul 21, 2014 19:46

Calcule:

\int_{0}^{1}\frac{dx}{{x}^{2}+6x+8}

resp: \frac{1}{2}ln\frac{6}{5}

Muito obrigado
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Integral por frações parciais

Mensagempor jeff_95 » Sex Ago 29, 2014 06:14

Nessa integral devemos aplicar o método das frações parciais. Para isso devemos verificar se o polinômio pode ser fatorado num produto de binômios. Nesse caso, é fácil fazer isso pois é um polinômio de segundo grau. Após verificar o valor do discriminante \Delta e encontrar as raízes temos que:

\frac{1}{x^2+6x+8} = \frac{1}{(x+2)(x+4)}

Logo é possível separar o termo em 2 frações parcias. Fazendo isso temos:

\frac{1}{(x+2)(x+4)} = \frac{A}{x+2} + \frac{B}{x+4}

Temos que ter: B(x+2) + A(x+4) = 1 (Polinômios idênticos)

Resolvendo o sistema encontramos: A=\frac{1}{2} e B=-\frac{1}{2}

Então:

\int\frac{1}{x^2+6x+8}dx = \int\frac{1}{(x+2)(x+4)}dx = \int\frac{\frac{1}{2}}{x+2}+ \frac{\frac{-1}{2}}{x+4}dx

\int\frac{\frac{1}{2}}{x+2}+ \frac{\frac{-1}{2}}{x+4}dx = \int\frac{\frac{1}{2}}{x+2}dx+ \int\frac{\frac{-1}{2}}{x+4}dx

Resolvendo a última integral por substituição (substiuindo u = (x+2) e repetindo o mesmo procedimento para a outra integral, temos:

\int\frac{1}{x^2+6x+8}dx = \frac{1}{2}ln(x+2)-\frac{1}{2}ln(x+4)+C

Assim \int_0^1\frac{1}{x^2+6x+8} = \frac{1}{2}[ln(1+2)-ln(1+4)-ln(0+2)+ln(0+4)] = \frac{1}{2}ln(\frac{6}{5})

Espero ter ajudado !!
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}