por Fernandobertolaccini » Ter Jul 08, 2014 17:37
Dê a derivada de y= (tgx - 1 / secx)
Resp: y' = cos(x) + sen(x)
Muito obrigado !!
-
Fernandobertolaccini
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qui Mai 01, 2014 10:27
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por e8group » Ter Jul 08, 2014 17:45
Dica :
\frac{tan x - 1}{secx } = sin x - cos x [/tex] .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada funções trigonométricas
por samysoares » Seg Mar 04, 2013 13:38
- 4 Respostas
- 2499 Exibições
- Última mensagem por marinalcd

Sex Mar 08, 2013 15:29
Cálculo: Limites, Derivadas e Integrais
-
- [derivada de funçoes diferenciais]
por lucasdemirand » Qua Ago 07, 2013 00:34
- 1 Respostas
- 1438 Exibições
- Última mensagem por Russman

Qua Ago 07, 2013 15:46
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] derivada de funções trigonometricas
por beel » Qua Set 21, 2011 13:09
- 3 Respostas
- 2547 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:07
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial - Teorema das Funções Implícitas]
por raimundoocjr » Qua Nov 06, 2013 21:16
- 0 Respostas
- 1149 Exibições
- Última mensagem por raimundoocjr

Qua Nov 06, 2013 21:16
Cálculo: Limites, Derivadas e Integrais
-
- Funções reais. como resolver estas funções...
por LEANDRO HENRIQUE » Ter Mar 04, 2014 18:43
- 0 Respostas
- 3264 Exibições
- Última mensagem por LEANDRO HENRIQUE

Ter Mar 04, 2014 18:43
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.