• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trig. Integral

Trig. Integral

Mensagempor stuart clark » Ter Jul 08, 2014 04:04

Evaluation of \displaystyle \int \sqrt[4]{\tan x}dx
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Trig. Integral

Mensagempor e8group » Ter Jul 08, 2014 14:10

Every positive number can be written as a positive number to the power 4 . In order to us evaluate the integral ,let 0 \leq  tan(x) := u^4 , u > 0  (*) . Taking a derivative from both sides of (*) , we get

sec^2(x)  dx = 4 \cdot u^3 du    (**). Now , we use an identity to give an expression a more convenient form

tan^2(\theta) + 1 =  sec^2(\theta)  , \forall \theta \in\mathbb{R} .Thus

(1+ \underbrace{tan^2x}_{u^8} )dx = 4 \cdot u^3 du which yields

dx = 4\frac{u^3}{1+u^8} du . And finally we have ,


\int \sqrt[4]{tan(x)} dx = 4 \int \frac{u^4}{1+u^8} du .

I'm not sure if i'm on the right track ... Perhaps , we can attempt to use partial
fraction decomposition to write the latter integrand as a sum of fractions .

There's a trick to express u^8 + 1 as a
product of two irreducible polynomials ...

1+u^8 = 1+ (u^4)^2 =  1^2 + 2 \cdot u^4 + (u^4)^2 -  2 \cdot u^4  = (1+u^4)^2 - (\sqrt{2}u^2)^2  =   (1+u^4 + \sqrt{2} \cdot u^2 +1 ) (1+u^4 - \sqrt{2} \cdot u^2 +1 )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59