por Daniela[ » Sáb Jul 05, 2014 15:15
Boa Tarde
Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!
1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.
2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)
NO AGUARDO!
OBRIGADA
-
Daniela[
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Jul 05, 2014 14:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia quimica
- Andamento: cursando
por young_jedi » Sáb Jul 05, 2014 15:34
derivando o volume com relação ao tempo teremos


como a taxa de variação do volume é igual a taxa de ar que esta sendo bombeado


a segunda equação é parecida é só derivar e substituir valores tente concluir e comente
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Daniela[ » Dom Jul 06, 2014 11:30
Bom dia!
Obrigada consegui intender e fazer, e cheguei no resultado que tenho aqui 0,09 pol/min.
E a outra você conseguiria me auxiliar, tenho a resposta de 128 pi cm²/s, mais tentei e não chego no raciocinio correto, se poderes me auxiliar!
Muito Obrigada!
-
Daniela[
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Jul 05, 2014 14:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia quimica
- Andamento: cursando
por young_jedi » Dom Jul 06, 2014 14:25
Tudo bem
Utilizando a equação da area

derivando de maneira implicita com relação ao tempo

como

para r=4 teriamos


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Taxas Relacionadas]
por Ana_Rodrigues » Seg Nov 14, 2011 10:02
- 2 Respostas
- 4593 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 12:19
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:48
- 0 Respostas
- 1460 Exibições
- Última mensagem por RonnieAlmeida

Qui Mai 22, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:58
- 1 Respostas
- 2710 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 07:59
Cálculo: Limites, Derivadas e Integrais
-
- Taxas relacionadas
por Lorijuca » Qui Mai 29, 2014 22:23
- 0 Respostas
- 2953 Exibições
- Última mensagem por Lorijuca

Qui Mai 29, 2014 22:23
Cálculo: Limites, Derivadas e Integrais
-
- Taxas relacionadas
por Fernandobertolaccini » Sáb Out 25, 2014 09:57
- 5 Respostas
- 4577 Exibições
- Última mensagem por Fernandobertolaccini

Sáb Out 25, 2014 12:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.