• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada - Regra de Cadeia]

[Derivada - Regra de Cadeia]

Mensagempor anner » Sex Jul 04, 2014 00:14

Boa noite, pessoal. Tô com uma certa dificuldade numa derivada aqui, já quebrei a cabeça aqui e não consigo chegar a resposta do gabarito.
a questão é a seguinte:
f(x)=[sen(x)]^{[2x^x-x+3]}

comecei levando em consideração, primeiramente, a derivação de u^v
tendo como v=[2x^x-x+3], e posteriormente a de "v". Entretanto, o problema, acredito, esta realmente na derivação de u^v. Pois o expoente da expressão, no gabarito, está bem diferente o meu.
Eis a resposta que encontrei e a do gabarito, respectivamente:
(2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x))

e



{[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]}

Alguém poderia me ajudar? Mto Obrigada ;)
anner
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 03, 2014 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada - Regra de Cadeia]

Mensagempor e8group » Sex Jul 04, 2014 01:17

Como derivar expressões da forma f(x)^{g(x)} ?

A dica é escrever f(x)^{g(x)} na base e , para tal, note que

f(x)^{g(x)} = epx(ln\left(f(x)^{g(x)}\right) \right) ( Aqui usamos que epx composta com ln dá a aplicação identidade e vice-versa ) .

Utilizando propriedades de logaritmo , segue-se que

f(x)^{g(x)} = epx(g(x) \cdot ln(f(x)) .

Observe que estamos avaliando exp(x) =e^x em g(x) \cdot ln(f(x)) .Agora é possível derivar f(x)^{g(x)} pois conhecemos a derivada de exp(x) , ln(x) e temos a regra da cadeia e produto .

Aplicando a regra da cadeia e regra do produto obterá

(f(x)^{g(x)})' = (epx(g(x) \cdot ln(f(x)) )' =epx'(g(x) \cdot ln(f(x))  \cdot (g(x) \cdot ln(f(x)) '  = \boxed{epx(g(x) \cdot ln(f(x))  \cdot  \left(g'(x) \cdot ln(f(x)) +  \frac{g(x)}{f(x)} f'(x) \right) }

Ou se preferir

\boxed{(f(x)^{g(x)})'  =f(x)^{g(x)} \left(g'(x) \cdot ln(f(x)) +  \frac{g(x)}{f(x)} f'(x) \right) }  }

Recomendo que tente fazer o exercício seguindo o mesmo raciocínio .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

TAXAS RELACIONADAS

Mensagempor Daniela[ » Sáb Jul 05, 2014 14:40

Boa Tarde!

Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!

1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.


2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)


NO AGUARDO!
OBRIGADA
Daniela[
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jul 05, 2014 14:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D