por anner » Sex Jul 04, 2014 00:14
Boa noite, pessoal. Tô com uma certa dificuldade numa derivada aqui, já quebrei a cabeça aqui e não consigo chegar a resposta do gabarito.
a questão é a seguinte:
![f(x)=[sen(x)]^{[2x^x-x+3]} f(x)=[sen(x)]^{[2x^x-x+3]}](/latexrender/pictures/c203a533d1249fa3a0bd9482a780bfc4.png)
comecei levando em consideração, primeiramente, a derivação de

tendo como v=
![[2x^x-x+3] [2x^x-x+3]](/latexrender/pictures/fd3b4e310353318714e0a6def73e93be.png)
, e posteriormente a de "v". Entretanto, o problema, acredito, esta realmente na derivação de

. Pois o expoente da expressão, no gabarito, está bem diferente o meu.
Eis a resposta que encontrei e a do gabarito, respectivamente:
![(2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x)) (2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x))](/latexrender/pictures/9dd6a1e33c1b82de7ba2309faddc6e34.png)
e
![{[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]} {[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]}](/latexrender/pictures/b10b5610012742c7f7da39e0e5c6d7fa.png)
Alguém poderia me ajudar? Mto Obrigada

-
anner
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jul 03, 2014 23:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por e8group » Sex Jul 04, 2014 01:17
Como derivar expressões da forma

?
A dica é escrever

na base

, para tal, note que

( Aqui usamos que epx composta com ln dá a aplicação identidade e vice-versa ) .
Utilizando propriedades de logaritmo , segue-se que

.
Observe que estamos avaliando

em

.Agora é possível derivar

pois conhecemos a derivada de

e temos a regra da cadeia e produto .
Aplicando a regra da cadeia e regra do produto obterá
Ou se preferir
Recomendo que tente fazer o exercício seguindo o mesmo raciocínio .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Daniela[ » Sáb Jul 05, 2014 14:40
Boa Tarde!
Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!
1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.
2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)
NO AGUARDO!
OBRIGADA
-
Daniela[
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Jul 05, 2014 14:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Regra da cadeia
por gabriel feron » Seg Out 01, 2012 23:08
- 1 Respostas
- 1500 Exibições
- Última mensagem por young_jedi

Seg Out 01, 2012 23:16
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] regra da cadeia
por tatianaCAL » Sáb Jun 22, 2013 09:47
- 1 Respostas
- 1397 Exibições
- Última mensagem por young_jedi

Sáb Jun 22, 2013 11:33
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]regra da cadeia
por principiante » Dom Fev 04, 2018 10:28
- 1 Respostas
- 4903 Exibições
- Última mensagem por Baltuilhe

Dom Fev 04, 2018 21:02
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela regra da cadeia
por Priscila_moraes » Ter Dez 06, 2011 12:48
- 3 Respostas
- 2164 Exibições
- Última mensagem por MarceloFantini

Ter Dez 06, 2011 15:38
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada - Regra da cadeia
por Sobreira » Dom Dez 02, 2012 13:23
- 1 Respostas
- 2339 Exibições
- Última mensagem por DanielFerreira

Dom Dez 02, 2012 18:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.