• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada - Regra de Cadeia]

[Derivada - Regra de Cadeia]

Mensagempor anner » Sex Jul 04, 2014 00:14

Boa noite, pessoal. Tô com uma certa dificuldade numa derivada aqui, já quebrei a cabeça aqui e não consigo chegar a resposta do gabarito.
a questão é a seguinte:
f(x)=[sen(x)]^{[2x^x-x+3]}

comecei levando em consideração, primeiramente, a derivação de u^v
tendo como v=[2x^x-x+3], e posteriormente a de "v". Entretanto, o problema, acredito, esta realmente na derivação de u^v. Pois o expoente da expressão, no gabarito, está bem diferente o meu.
Eis a resposta que encontrei e a do gabarito, respectivamente:
(2x^x-x+3){[sen(x)]^{[2x^x-x+2]}}cos(x)+{[sen(x)]^{[2x^x-x+3]}}ln[sen(x)](2x^x)[1+ln(x)]-{[sen(x)]^{[2x^x-x+3]}}ln(sen(x))

e



{[sen(x)]^{[2x^x-x+3]}}{[2x^x]-x+3}cotg(x)+ln[sen(x)][2x^x(ln(x)+1)-1]}

Alguém poderia me ajudar? Mto Obrigada ;)
anner
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 03, 2014 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada - Regra de Cadeia]

Mensagempor e8group » Sex Jul 04, 2014 01:17

Como derivar expressões da forma f(x)^{g(x)} ?

A dica é escrever f(x)^{g(x)} na base e , para tal, note que

f(x)^{g(x)} = epx(ln\left(f(x)^{g(x)}\right) \right) ( Aqui usamos que epx composta com ln dá a aplicação identidade e vice-versa ) .

Utilizando propriedades de logaritmo , segue-se que

f(x)^{g(x)} = epx(g(x) \cdot ln(f(x)) .

Observe que estamos avaliando exp(x) =e^x em g(x) \cdot ln(f(x)) .Agora é possível derivar f(x)^{g(x)} pois conhecemos a derivada de exp(x) , ln(x) e temos a regra da cadeia e produto .

Aplicando a regra da cadeia e regra do produto obterá

(f(x)^{g(x)})' = (epx(g(x) \cdot ln(f(x)) )' =epx'(g(x) \cdot ln(f(x))  \cdot (g(x) \cdot ln(f(x)) '  = \boxed{epx(g(x) \cdot ln(f(x))  \cdot  \left(g'(x) \cdot ln(f(x)) +  \frac{g(x)}{f(x)} f'(x) \right) }

Ou se preferir

\boxed{(f(x)^{g(x)})'  =f(x)^{g(x)} \left(g'(x) \cdot ln(f(x)) +  \frac{g(x)}{f(x)} f'(x) \right) }  }

Recomendo que tente fazer o exercício seguindo o mesmo raciocínio .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

TAXAS RELACIONADAS

Mensagempor Daniela[ » Sáb Jul 05, 2014 14:40

Boa Tarde!

Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!

1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.


2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)


NO AGUARDO!
OBRIGADA
Daniela[
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jul 05, 2014 14:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59