• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] - dúvida

[limites] - dúvida

Mensagempor natanaelskt » Sáb Jun 28, 2014 09:35

Fala,galera. preciso de ajuda neste exercício. não sei calcular estes limites. se alguém souber eu agradeceria se me ajudasse. postei o exercício em anexo-foto.
Anexos
limite.PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limites] - dúvida

Mensagempor e8group » Sáb Jun 28, 2014 13:26

Por favor , apenas anexe imagens se for necessário .

O primeiro vale \frac{1}{2} e o segundo 0 .

Dicas :

Para o primeiro , limites fundamentais \lim_{x \to 0} sin(x)/x = 1 e \lim_{x \to 0} (x+1)^{1/x} = e .(p/ usar tal resultados , multiplique o numerador e denominador por 1 + cos x e também use que ln(1+x)/x = ln(1+x)^{1/x} .)

Para o segundo , estude o comportamento de x^x no + infinito .Note que \frac{x^2}{x^3+1} = x^2 \cdot  \left(  \frac{1}{x^3 +1} \right) . É sempre verdade que x^3 +1 \geq  x^3  > 0 para todo x > 0 o que equivale dizer que \frac{1}{x^3+1} \leq \frac{1}{x^3} para todo x > 0 ou ainda \frac{x^2}{x^3+1} \leq \frac{x^2}{x^3}  =  \frac{1}{x} para todo x > 0 . E assim , temos a desigualdade

\left(\frac{x^2}{x^3+1} \right)^x \leq  \frac{1}{x^x} , \forall x > 0 .

Observe também a positividade de \left(\frac{x^2}{x^3+1} \right)^x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59