• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] - dúvida

[limites] - dúvida

Mensagempor natanaelskt » Sáb Jun 28, 2014 09:35

Fala,galera. preciso de ajuda neste exercício. não sei calcular estes limites. se alguém souber eu agradeceria se me ajudasse. postei o exercício em anexo-foto.
Anexos
limite.PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limites] - dúvida

Mensagempor e8group » Sáb Jun 28, 2014 13:26

Por favor , apenas anexe imagens se for necessário .

O primeiro vale \frac{1}{2} e o segundo 0 .

Dicas :

Para o primeiro , limites fundamentais \lim_{x \to 0} sin(x)/x = 1 e \lim_{x \to 0} (x+1)^{1/x} = e .(p/ usar tal resultados , multiplique o numerador e denominador por 1 + cos x e também use que ln(1+x)/x = ln(1+x)^{1/x} .)

Para o segundo , estude o comportamento de x^x no + infinito .Note que \frac{x^2}{x^3+1} = x^2 \cdot  \left(  \frac{1}{x^3 +1} \right) . É sempre verdade que x^3 +1 \geq  x^3  > 0 para todo x > 0 o que equivale dizer que \frac{1}{x^3+1} \leq \frac{1}{x^3} para todo x > 0 ou ainda \frac{x^2}{x^3+1} \leq \frac{x^2}{x^3}  =  \frac{1}{x} para todo x > 0 . E assim , temos a desigualdade

\left(\frac{x^2}{x^3+1} \right)^x \leq  \frac{1}{x^x} , \forall x > 0 .

Observe também a positividade de \left(\frac{x^2}{x^3+1} \right)^x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)