por Janoca » Ter Jun 24, 2014 17:08
Nessa questão o problema foram as letras b, d ,e. Acredito q a letra a e c estão corretas.
Preciso entender o comportamento dessa equação.
A posição de uma partícula que se desloca ao longo do eixo x varia com o tempo segundo a equação

onde

e k são constantes estritamente positivas.
a) Qual a velocidade no instante t?
resposta:

b) Com argumentos físicos, justifique a afirmação: "a função é estritamente crescente".
c) Qual a aceleração no instante t?
resposta:

d) Com argumentos físicos, justifique a afirmação: " o gráfico da função tem a concavidade voltada para baixo".
e) Calcule o

.
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Janoca » Ter Jun 24, 2014 18:45
Eu ja calculei o Limite da letra e, segue abaixo:

, resta saber as alternativas b e d
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas - Velocidade e Aceleração
por Fabio Cabral » Ter Jun 14, 2011 14:49
- 1 Respostas
- 4296 Exibições
- Última mensagem por carlosalesouza

Ter Jun 14, 2011 15:40
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Taxa de variação - velocidade
por emanes » Qua Out 17, 2012 11:10
- 1 Respostas
- 3833 Exibições
- Última mensagem por young_jedi

Qua Out 17, 2012 11:50
Cálculo: Limites, Derivadas e Integrais
-
- Integral de uma Aceleração
por Atirador » Sáb Nov 18, 2017 18:36
- 0 Respostas
- 5217 Exibições
- Última mensagem por Atirador

Sáb Nov 18, 2017 18:36
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Problema com aceleração
por MrJuniorFerr » Sáb Nov 10, 2012 20:19
- 4 Respostas
- 3051 Exibições
- Última mensagem por young_jedi

Sáb Nov 10, 2012 21:37
Cálculo: Limites, Derivadas e Integrais
-
- [Urgente] Integrar uma aceleração dada
por grey » Qua Fev 15, 2017 19:08
- 1 Respostas
- 2077 Exibições
- Última mensagem por adauto martins

Qui Fev 16, 2017 17:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.