• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite - Duas Variáveis (Indeterminação)]

[Limite - Duas Variáveis (Indeterminação)]

Mensagempor raimundoocjr » Qui Out 17, 2013 21:55

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 18 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.
\lim_{(x, y)\rightarrow (0, 0)} \frac {xy^4}{x^2+y^8}

Resposta para o cálculo do limite: 0 (zero).

Coloquei a definição apenas para tentar clarear as ideias. Mas, se alguém conseguir responder por outro método, irá ajudar. Por exemplo, Teorema do Confronto, mudança de variável etc.

Definição de Limite de uma Função de Duas Variáveis (pelo menos):
Imagem
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)

Como faço para provar esse limite?
raimundoocjr
 

Re: [Limite - Duas Variáveis (Indeterminação)]

Mensagempor Man Utd » Ter Jun 17, 2014 13:05

Olá:D


Esse limite não existe, vamos usar a regra dos caminhos :


\lim_{ (x,y) \to (0,0) } \; \frac{xy^4}{x^2+y^8}



Pelo caminho : (x,0) :


\lim_{x \to 0 } \; \frac{x*0^4}{x^2+0^8}=0



Agora por : (y^4,y) :


\lim_{y \to 0} \; \frac{y^4*y^4}{y^8+y^8}


\lim_{y \to 0} \; \frac{y^8}{2y^8}=\frac{1}{2}



Assim como os valores são diferentes temos que o limite não existe.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: