• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas de Funções

Derivadas de Funções

Mensagempor METEOS » Qua Mai 07, 2014 17:20

Boa tarde,

Tenho uma dúvida no exercício 13, e gostava que alguém me explicasse como se faz:

http://postimg.org/image/b9hzq643z/

(O exercício encontrasse neste site)

Obrigado
Luís Soares
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: Derivadas de Funções

Mensagempor Russman » Qua Mai 07, 2014 19:54

Nesses exercícios de "...dada reta tangente determine a função tal que..." ou "...dada função calcule a reta tangente no pon..." é conveniente calcular uma fórmula simples que, dado ponto, você é capaz de calcular rapidamente a equação da reta tangente ao gráfico da função, ou vise-versa.

Seja a equação da reta y(x) = ax+b, a,b \in \mathbb{R}. Sabemos que, se essa reta é tangente ao gráfico de f(x) no ponto (x_0,f(x_0)), então

a = \frac{\mathrm{d} f(x)}{\mathrm{d} x} \left   \right |_{x=x_0} = f'(x_0).

Isto é, a constante a é a derivada da função calculada no ponto de tangência.

Daí, como em x=x_0 temos de ter y(x_0) = f(x_0), então

y(x_0) = ax_0 + b = f(x_0) \Rightarrow b = f(x_0) - x_0 f'(x_0)

e, portanto,

y(x) = f'(x_0) (x-x_0) + f(x_0)

é a reta tangente a f(x) no ponto x=x_0.

Já que no exercício diz que y=-3x-1 em x=-2 então, por comparação,

f'(-2)x +2f'(-2) + f(-2) = -3x -1

de onde f'(-2) = -3 e 2f'(-2) + f(-2) = -1 \Rightarrow -6 + f(-2) = -1 \Rightarrow  f(-2) = 5.

Agora, como você sabe que o gráfico é de uma parábola, tome f(x) = ax^2 + bx+c de onde f'(x) =2ax + b. OBS: este a e b não tem nada que ver com a dedução da equação da reta tangente que fizemos anteriormente.
Como e visível que o gráfico passa pelo ponto (0,0), então c=0.
Substituindo na relação encontrada, vem que

2.a.(-2) + b = -3 \Rightarrow -4a + b = -3
a(-2)^2 + b.(-2) + 0 = -5 \Rightarrow 4a-2b=5

Chegamos em um sistema 2x2 em a e b. Podemos resolve-lo de diversas formas. Eu acho mais rápido somar as duas equações, já que o coeficiente de a automaticamente se cancela. Fazendo isso,

-b = 2 \Rightarrow  b=-2

e, portanto,

a = \frac{-3 +2}{-4} = \frac{1}{4}.

Logo, a parábola é f(x) = \frac{1}{4} x^2 -2x
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.