• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Sex Abr 25, 2014 22:51

\int_{-1}^{1} xe^x^2 dx
tenho que calcular essa integral e cheguei na seguinte resposta gostaria de saber se está certa ou não

\int_{-1}^{1} e ^x^2 x ^x^2 . dx \approx1.50033+0,691773i
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor e8group » Sáb Abr 26, 2014 00:12

Numero complexo ??

A integral é essa \int_{-1}^{1} x^3e^{x^2} dx ? Se for nem precisa fazer contas , a resposta é zero . A teoria abaixo justifica isto .

Fixemos a > 0 e definamos f : [-a,a] \mapsto  \mathbb{R} contínua (ou número de descontinuidade finito )[hipótese para garanti a integrabilidade de f ] e além disso suponha f uma função ímpar , isto é f(x) = - f(-x)  \forall  x \in  [-a,a] . Agora veja ...

\int_{-a}^{a} f(x)dx =\int_{-a}^{0} f(x)dx  +  \int_{0}^a f(x)dx  =   \int_{-a}^{0} f(u)du  +  \int_{0}^a f(x)dx .

Como f é impar \int_{-a}^{0} f(u)du =  \int_{0}^{-a} f(-u)du . Fazendo x =- u , temos -dx =du e os limites de integração a ; 0 .Assim ,\int_{-a}^{0} f(u)du  =  - \int_{0}^{a} f(x)dx . E portanto ,

\int_{-a}^{a} f(x)dx =\int_{-a}^{0} f(x)dx  +  \int_{0}^a f(x)dx  =   \int_{-a}^{0} f(u)du  +  \int_{0}^a f(x)dx  =  - \int_{0}^a f(x)dx  + \int_{0}^a f(x)dx   =  0 .

Conclusão : o resultado de integrais definidas (cujos limites de integração são simétricos um do outro ) em relação a função impares (que satisfaz as condições de ser integrável = ser contínua ou contínua por partes ) será sempre zero .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.