por urso » Ter Abr 22, 2014 11:08
Buenas galera!
Estou com duvida nesta questão, não sei se para resolver ela, não sei se preciso pegar os pontos em x e y para ver se é continua e se preciso derivar para encontrar a diferenciabilidade.

Tenho mais 2 questões nesse estilo, qualquer coisa posto aqui para tirar as duvidas depois que vocês me derem uma luz nessa! Vlw!

-
urso
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 22, 2014 10:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Mec
- Andamento: cursando
por urso » Ter Abr 22, 2014 15:58
Bom galera, acho que consegui resolver!
Eu fiz os limites e descobri:
f(1) = -2.1+4 = 2
f(1) = -2.1+5 = 3
Como os limites não são iguais, o limite bilateral não existe consequentemente não é diferenciavel em x=1.
Tudo certo até aqui, mas se a questão tivesse limite bilateral, o que eu faço? Derivo? Para isso trouxe a tona mais 2 questões, preciso de ajuda nelas!

-
urso
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 22, 2014 10:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Mec
- Andamento: cursando
por e8group » Qua Abr 23, 2014 11:18
Polinômios definidos em um intervalo aberto são sempre diferenciáveis .
Considere

e

.
Como ambos polinômios estão definidos em intervalos abertos , logo eles são diferenciáveis .Assim , usando que diferenciabilidade implica continuidade já podemos afirmar que a função

é contínua em

.Agora vamos mostrar que

é diferenciável em x = 1 e com isso concluir que f é contínua .
Por definição ,

desde que o limite exista . E quando o limite existe ? Quando os limites laterais de f são números reais e são iguais .
Assim ,
(i)

.Como estamos trabalhando com

então

.Segue

.
(ii)

é diferenciável em x = 1 .Só por curiosidade f é diferenciável em toda reta .
OBS.: Só para efeito de organização (vide regras do fórum ) evite postar mais de uma dúvida em um único tópico , uma dúvida para cada tópico . Além disso , anexe imagens somente se for necessário . Neste caso pode usar o LaTeX para digitar suas expressões .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por urso » Qua Abr 23, 2014 12:24
Bom dia Santhiago! Obrigado pela resposta

, foi de grande valia!
Grato,
-
urso
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 22, 2014 10:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Mec
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cálculo I - Gráfico
por Hel » Sáb Jan 09, 2010 15:52
- 0 Respostas
- 1872 Exibições
- Última mensagem por Hel

Sáb Jan 09, 2010 15:52
Cálculo: Limites, Derivadas e Integrais
-
- Calculo 1: Grafico
por Piva » Qua Jun 29, 2011 19:13
- 0 Respostas
- 1355 Exibições
- Última mensagem por Piva

Qua Jun 29, 2011 19:13
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] esboço de gráfico
por beel » Ter Nov 01, 2011 16:16
- 1 Respostas
- 2065 Exibições
- Última mensagem por LuizAquino

Ter Nov 01, 2011 16:29
Cálculo: Limites, Derivadas e Integrais
-
- cálculo 1 gráfico da função
por ezidia51 » Dom Set 29, 2019 19:53
- 2 Respostas
- 6179 Exibições
- Última mensagem por ezidia51

Seg Set 30, 2019 17:28
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Lei da função a partir do grafico
por deosdete » Dom Jun 10, 2012 16:29
- 4 Respostas
- 3135 Exibições
- Última mensagem por LuizAquino

Ter Jun 12, 2012 12:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.