• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Calcular 2 limites notáveis

[Limites] Calcular 2 limites notáveis

Mensagempor fff » Sex Abr 11, 2014 14:26

\lim_{x\rightarrow-\propto}\frac{ln(-x-1)}{x}
R:0
\lim_{x\rightarrow1}\frac{-1+{e}^{1-x^2}}{x-1}
R:-2
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Limites] Calcular 2 limites notáveis

Mensagempor e8group » Sex Abr 11, 2014 17:52

Dica para o segundo limite :

Sendo f(x) a expressão q desejamos calcular o limite .Temos

f(x) = \frac{f(x)}{x+1}  \cdot  (x+1) . Pelas regras operacionais ,

\lim_{x\to 1}  f(x) =   \left(\lim_{x\to 1} \frac{f(x)}{x+1} \right) \lim_{x\to 1}(x+1) = 2 \left(\lim_{x\to 1} \frac{f(x)}{x+1} \right) .

No primeiro tente fazer u = ln(-x-1)

Avance ,boa sorte ! .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Calcular 2 limites notáveis

Mensagempor fff » Sex Abr 11, 2014 18:11

Obrigada pela explicação. Já consegui fazer o primeiro:
y=ln(-x-1) e x=-e^y-1
\lim_{y\rightarrow+\propto}\frac{y}{-{e}^{y}-1}=\lim_{y\rightarrow+\propto}\frac{1}{\frac{-{e}^{y}}{y}-\frac{1}{x}}
Como \lim_{y\rightarrow+\propto}\frac{{e}^{y}}{y}=+\propto
\frac{1}{-(+\propto)-\frac{1}{+\propto}}=\frac{1}{-\propto-0}=0
Em relação ao segundo, continuo sem conseguir fazer.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Limites] Calcular 2 limites notáveis

Mensagempor e8group » Sex Abr 11, 2014 18:45

No segundo , multiplicando em cima e em baixo por (x+1) , no denominador fica - (1-x^2) e no numerador (x+1)(-1+e^{1-x^2}) e assim ,

f(x)= \frac{-1+e^{1-x^2}}{x-1} =  -(x+1) \frac{-1 +e^{1-x^2}}{1-x^2} . Pela regras operatórias , obterá

\lim_{x\to 1} f(x) =  -2 \cdot \lim_{x\to 1}  \frac{-1 +e^{1-x^2}}{1-x^2} .

P.S.:

Fixe a > 0 o limite de (a^t - 1)/t vale ln(a) quando t tende a zero .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Calcular 2 limites notáveis

Mensagempor fff » Sex Abr 11, 2014 19:12

Muito obrigada, já percebi :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59