• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Indefinida

Integral Indefinida

Mensagempor RenanDias » Dom Fev 23, 2014 17:17

Olá pessoal. Preciso de ajuda nessa questão, olhem:


\int_{}^{}\frac{{cos}^{5}x}{\sqrt[]{sen x}}dx


Tentei por partes, mas aparentemente a integral não fica mais simples de se resolver.
Esta integral é o exercício 15 do livro Cálculo - James Stewart 7 ed no capítulo de Integrais trigonométricas.
RenanDias
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Out 20, 2013 16:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Integral Indefinida

Mensagempor young_jedi » Dom Fev 23, 2014 18:48

podemos resolve-la por substituição

\int\frac{cos^5(x)}{\sqrt{sen(x)}}dx

\int cos^4(x)\frac{cos(x)}{\sqrt{sen(x)}}dx

\int 2cos^4(x)\frac{cos(x)}{2\sqrt{sen(x)}}dx

fazendo

u=\sqrt{sen(x)}

du=\frac{cos(x)}{2\sqrt{sen(x)}}dx

cos^4(x)=(cos^2(x))^2

=(1-sen^2(x))^2=(1-\sqrt{sen(x)}^4)^2

=(1-u^4)^2

portanto a integral fica

=\int 2(1-u^4)^2du

tente finalizar a partir daqui e comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.