por gustavoluiss » Qui Jan 16, 2014 22:37
O exercício da foto em questão, estou com mais dúvida em como alterar a ordem de integração, grato desde de já .
O exercício 2, letra a.
e a letra b, quem estiver disposto também.
- Anexos
-

-
gustavoluiss
- Colaborador Voluntário

-
- Mensagens: 118
- Registrado em: Ter Nov 23, 2010 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Guilherme Pimentel » Sex Jan 17, 2014 02:39
[A]A região de integração é:


- Região de integração
- plot region.gif (3.75 KiB) Exibido 2225 vezes
Invertendo a ordem, ficamos com:

e logo a integral fica:

-
Guilherme Pimentel
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Dom Jan 12, 2014 19:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Economia
- Andamento: formado
por Guilherme Pimentel » Sex Jan 17, 2014 03:01
[B]A região de integração é a mesma com os nomes das variaveis trocadas (o q muda a posição do gráfico):


- Região de Integração
- plot region b.gif (3.71 KiB) Exibido 2225 vezes
Invertendo a ordem, ficamos com:

e logo a integral fica:

-
Guilherme Pimentel
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Dom Jan 12, 2014 19:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Economia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integrais Duplas
por gilijgs » Ter Nov 17, 2015 11:20
- 0 Respostas
- 2434 Exibições
- Última mensagem por gilijgs

Ter Nov 17, 2015 11:20
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAIS DUPLAS]Calcular o volume
por Tathiclau » Sex Jan 10, 2014 01:55
- 2 Respostas
- 2985 Exibições
- Última mensagem por Guilherme Pimentel

Seg Jan 13, 2014 06:24
Cálculo: Limites, Derivadas e Integrais
-
- Integrais duplas por coordenadas polares
por Victor Mello » Dom Mai 25, 2014 16:48
- 0 Respostas
- 1002 Exibições
- Última mensagem por Victor Mello

Dom Mai 25, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variaveis em integrais duplas e triplas
por luiz3d » Qui Out 08, 2009 17:09
- 0 Respostas
- 3734 Exibições
- Última mensagem por luiz3d

Qui Out 08, 2009 17:09
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:33
- 1 Respostas
- 3051 Exibições
- Última mensagem por Russman

Dom Jan 11, 2015 19:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.