• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integrais duplas] Exercício livro diomara

[integrais duplas] Exercício livro diomara

Mensagempor gustavoluiss » Qui Jan 16, 2014 22:37

O exercício da foto em questão, estou com mais dúvida em como alterar a ordem de integração, grato desde de já .

O exercício 2, letra a.
e a letra b, quem estiver disposto também.
Anexos
20140116_221122.jpg
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [integrais duplas] Exercício livro diomara

Mensagempor Guilherme Pimentel » Sex Jan 17, 2014 02:39

[A]

A região de integração é:

0 \leq y \leq 1 \: \& \: y \leq x\leq 1

plot region.gif
Região de integração
plot region.gif (3.75 KiB) Exibido 2278 vezes

Invertendo a ordem, ficamos com:

0 \leq x \leq 1 \: \& \: 0 \leq y\leq x

e logo a integral fica:

\\
I=\int_{0}^1\int_{0}^x e^{-x^2}dydx=\int_{0}^1 x \cdot e^{-x^2}dx \\
u=-x^2\Rightarrow dx =- \frac{du}{2}\: \&\: -1\leq u \leq 0 \textrm{ e logo:}\\
I=-\frac{1}{2}\int_{0}^{-1}e^udu=\frac{e^0-e^{-1}}{2}=\frac{e-1}{2e}
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [integrais duplas] Exercício livro diomara

Mensagempor Guilherme Pimentel » Sex Jan 17, 2014 03:01

[B]

A região de integração é a mesma com os nomes das variaveis trocadas (o q muda a posição do gráfico):

0 \leq x \leq 1 \: \& \: x \leq y\leq 1

plot region b.gif
Região de Integração
plot region b.gif (3.71 KiB) Exibido 2278 vezes

Invertendo a ordem, ficamos com:

0 \leq y \leq 1 \: \& \: 0 \leq x\leq y

e logo a integral fica:

\\
I=\int_{0}^1\int_{0}^y \frac{\textrm{sen}(y)}{y}dxdy=\int_{0}^1 \textrm{sen}(y)dy=1-\cos(1)
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59