• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite (1 variável)

Limite (1 variável)

Mensagempor RenanDias » Sáb Out 26, 2013 22:49

Olá amigos, queria que algum de vocês me ajudasse neste limite que não consigo sair da indeterminação:

\lim_{x->0} \frac{{2}^{x}-1}{x}

O que eu tentei fazer
Tentei aplicar uma nova variavel a equação de cima e resolver em x, tipo:

{2}^{x}-1 = u
{2}^{x}=u+1
log {2}^{x}=log (u+1)
x.log2=log(u+1)
x=log(u+1)/log2

Pensei em mudar a base pra 2:

E ficar com: x = log de (u+1) na base 2 [não consegui fazer a base menor no editor]

E substituindo na equação de limite original eu continuo na mesma... alguém pode me dar um caminho?
RenanDias
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Out 20, 2013 16:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Limite (1 variável)

Mensagempor Man Utd » Dom Out 27, 2013 00:46

olá :)

continuando de onde parou com uma observação vou usar ln (logaritmo natural): \\\\\\ x=\frac{ln(u+1)}{ln2}

então o limite fica:

\\\\\\ \lim_{u\rightarrow 0}\frac{u}{\frac{ln(u+1)}{ln2}} \\\\\\  \lim_{u\rightarrow 0}\frac{ln2*u}{ln(u+1)} \\\\\\  ln2*\lim_{u\rightarrow 0}\frac{1}{\frac{ln(u+1)}{u}} \\\\\\   ln2*\lim_{u\rightarrow 0}\frac{1}{ln(u+1)^{\frac{1}{u}}} \\\\\\ ln2*(\frac{1}{\lim_{u\rightarrow 0}ln(u+1)^{\frac{1}{u}}})


perceba que \lim_{u\rightarrow 0}ln(u+1)^{\frac{1}{u}}=e

daí:

\\\\\\  ln2*\frac{1}{ln e}=ln2
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite (1 variável)

Mensagempor RenanDias » Seg Out 28, 2013 13:20

Huum... então o pulo do gato é usar o Logaritmo Natural... muito obrigado pela ajuda meu querido, vamos ver o que consigo fazer na prova. :) :)
RenanDias
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Out 20, 2013 16:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59