• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de um limite.

Resolução de um limite.

Mensagempor Sobreira » Qua Out 02, 2013 11:32

Amigos,

Fiz uma prova de cálculo 3 e havia uma sequência e o exercício pedia para determinar o limite da seguinte sequência:

\lim_{n\rightarrow\infty}\left(\frac{1-n}{{n}^{2}} \right)

Então resolvi por maior grau:

\left(\frac{\frac{1}{{n}^{2}}-\frac{n}{{n}^{2}}}{\frac{{n}^{2}}{{n}^{2}}} \right)

Logo:

\frac{0}{1}=0

Mas o professor me descontou metade da questão pois informou que a resposta estava correta mas o método de resolução errado :!: :!: :!:

Que erro há nesta resolução ???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolução de um limite.

Mensagempor Leticia_alves » Qua Out 02, 2013 16:01

Bom, temos o seguinte limite: \lim_{n\rightarrow\infty}\left(\frac{1-n}{{n}^{2}} \right).

Por ser uma indeterminação, utilizamos a Regra de L'Hospital, assim:
\lim_{n\rightarrow\infty}\left(\frac{1-n}{{n}^{2}} \right) = \lim_{n\rightarrow\infty}\left(\frac{\frac{d(1-n)}{dn}}{\frac{d{n}^{2}}{dn}} \right)
= \lim_{n\rightarrow\infty}\left(-\frac{1}{2n} \right)
= = -\frac{1}{2}\lim_{n\rightarrow\infty}\left(\frac{1}{n} \right)

O limite do quociente é o quociente dos limites:
Como o limite de constante é constante:

-\frac {1}{2(\lim_{n\rightarrow\infty}\left n)}

E, como o limite de n quando n tende ao infinito é infinito, segue que:

\lim_{n\rightarrow\infty}\left(\frac{1-n}{{n}^{2}} \right) = 0.

Não sei se é isso que o seu professor queria, mas só consigo enxergar esse método de resolução.
Espero ter ajudado!
Abraços
Leticia_alves
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sex Jun 14, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de um limite.

Mensagempor Sobreira » Qua Out 02, 2013 17:30

Então. Entendo que L´Hospital seria uma técnica a mais para resolver limites que não são facilmente resolvidos por fatoração, por exemplo. Posso utilizar perfeitamente L´Hospital, mas entendo que este limite seria também tranquilamente resolvido por alguma técnica mais simples (como dividir uma equação racional pelo maior grau de x, neste caso).
Então, utilizando esta técnica (imagino que efetuei o cálculo de forma correta) chego ao desenvolvimento do limite. Isto que gostaria de saber, se meu cálculo através desta técnica estaria correta ou não.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?