• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Raíz em cima e embaixo

[Limites] Raíz em cima e embaixo

Mensagempor vamola » Sáb Set 28, 2013 19:04

Fala pessoal, tudo bem? Tô tendo dificuldade em resolver esse limite:

\lim_{x \rightarrow 4} \frac{ \sqrt[2]{1+2x}-3}{\sqrt[2]{x}-2}

A resposta é 4/3.

Eu sei resolver por conjugado, quando tem raíz só em cima ou só embaixo é tranquilo, mas com raíz em cima e embaixo não to conseguindo não...como proceder?

Obrigado.
Editado pela última vez por vamola em Sáb Set 28, 2013 20:40, em um total de 1 vez.
vamola
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Set 28, 2013 18:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limites] Raíz em cima e embaixo

Mensagempor Man Utd » Sáb Set 28, 2013 19:55

vamola escreveu:Fala pessoal, tudo bem? Tô tendo dificuldade em resolver esse limite:

\lim_{x \rightarrow 4} \frac{ \sqrt[2]{1+2x}}{\sqrt[2]{x}-2}

A resposta é 4/3.

Eu sei resolver por conjugado, quando tem raíz só em cima ou só embaixo é tranquilo, mas com raíz em cima e embaixo não to conseguindo não...como proceder?

Obrigado.


amigo,favor verificar o enunciado se o limite for este,então não existe limite, conforme o wolfram : http://www.wolframalpha.com/input/?i=li ... 9%2Cx-%3E4
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limites] Raíz em cima e embaixo

Mensagempor vamola » Sáb Set 28, 2013 20:41

Realmente, tava faltando um -3. Agora corrigi.
E se possível me explicar sem utilizar L'Hopital seria melhor...eu até sei aplicar, mas como se trata de uma prova de limites, o professor não permite o uso do mesmo.

Valeu!
vamola
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Set 28, 2013 18:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limites] Raíz em cima e embaixo

Mensagempor Man Utd » Sáb Set 28, 2013 23:00

vamola escreveu:
\lim_{x \rightarrow 4} \frac{ \sqrt[2]{1+2x}-3}{\sqrt[2]{x}-2}




\\\\\\ \lim_{x \rightarrow 4} \frac{ \sqrt{1+2x}-3}{\sqrt{x}-2} \\\\\\ \lim_{x \rightarrow 4} \frac{(\sqrt{1+2x}-3)*(\sqrt{1+2x}+3)*(\sqrt{x}+2)}{(\sqrt{x}-2)*(\sqrt{1+2x}+3)*(\sqrt{x}+2)} \\\\\\  \lim_{x \rightarrow 4} \frac{(2x-8)*(\sqrt{x}+2)}{(x-4)*(\sqrt{1+2x}+3)} \\\\\\  \lim_{x \rightarrow 4} \frac{2*(x-4)*(\sqrt{x}+2)}{(x-4)*(\sqrt{1+2x}+3)}  \\\\\\  \lim_{x \rightarrow 4} \frac{2*(\sqrt{x}+2)}{\sqrt{1+2x}+3}=\frac{8}{6}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limites] Raíz em cima e embaixo

Mensagempor vamola » Dom Set 29, 2013 19:10

Perfeito. Obrigado.
vamola
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Set 28, 2013 18:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.