• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada de funçoes diferenciais]

[derivada de funçoes diferenciais]

Mensagempor lucasdemirand » Qua Ago 07, 2013 00:34

olá amigos, trago a vcs uma duvida no seguinte exercício, espero que possam me ajudar, obrigado desde já
Sejam f e g funções diferenciáveis tais que g(7)=1/4 e g'(7)=2/3 e f'(1/4)=10. seja h=fog, calcule h'(7).

tenho em meu gabarito a resposta 20/3. no entanto, nao sei nem por onde começar hehe, quem puder dar ao menos umas dicas, já ficarei muito grato
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [derivada de funçoes diferenciais]

Mensagempor Russman » Qua Ago 07, 2013 15:46

A função h é uma função composta de f e g. Assim,

h'(x) = f'(g(x)) . g'(x)

Agora basta substituir x=7.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}