• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] exercicio de limites tendendo a zero

[Limites] exercicio de limites tendendo a zero

Mensagempor lucasdemirand » Qui Jul 11, 2013 18:00

Olá pessoal, segue uma duvida em calculo, de limites.
quem puder ajudar ficarei grato, :)
\lim_{x\rightarrow 0}\frac{\sqrt[]{1+x}-1}{\sqrt[3]{1+x}-1}
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Limites] exercicio de limites tendendo a zero

Mensagempor e8group » Sex Jul 12, 2013 11:43

Por simplicidade de contas ,considere a substituição

w = \sqrt{x+1} .Tendo em conta que w\to 1 quando x\to 0 o limite dado pode ser reescrito como ,

\lim_{w\to 1} \frac{w-1}{w^{2/3} - 1} .

Observando que w = (w^{1/3} )^3 e fazendo p = w^{1/3} o último limite obtido é equivalente a ,

\lim_{p\to 1} \frac{p^3-1}{p^2 - 1} . Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.