• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla] Arcotangente

[Integral Dupla] Arcotangente

Mensagempor KleinIll » Qui Jun 20, 2013 17:52

Exercício: Uma carga elétrica é distribuída sobre uma placa R = \left[ \left(r,\theta) \right/ 0\leq\theta\leq\frac{\pi}{4}; 1\leq r\leq 2 \right]. A densidade de carga é de \delta\left(x,y \right) = arctang\left(\frac{\ y}{x} \right) (medida em Coulombs por metro quadrado). Qual é a carga total da placa?

Sendo y = r.sen \theta e x = r.cos \theta

Montei a integral dessa forma: \int_{0}^{\frac{\pi}{4}}\int_{1}^{2}r.{tg}^{-1}\left(tg\theta \right)drd\theta

Porém, não consigo resolver o problema devida a equação de densidade de carga elétrica, que é dada por arco-tangente.

Alguém pode ajudar?

Obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor young_jedi » Qui Jun 20, 2013 22:05

amigo, nos temos que


tg^{-1}(tg(\theta))=\theta

é so substituir na integral
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor KleinIll » Sex Jun 21, 2013 01:31

Obrigado. Eu só quero pedir mais uma coisa, caso não for incomodo, pode demonstrar ou apresentar os argumentos para que tg-¹(tgx) = x?

Edição: desconsidere, já esclareci.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor Jhenrique » Sex Jun 21, 2013 17:37

Tome como exemplo a equação y = x

Pode-se multiplicá-la por x, assim:

y/x = x/x

e terá:

y/x = 1

A ideia é análoga para y = f(x)

f?¹(y) = f?¹(f(x)) (a função inversa (f?¹) é aplicada na igualdade)

e resulta em:

f¹(y) = x

No seu caso, tg?¹(x) = arctg(x) = arco cuja tangente é x

fica assim:

arctg(tg(x)) = x

É como se as funções tg e arctg se cancelassem, da mesma forma quando adicionamos certo valor k em x e daí subtraimos esse mesmo valor k de x, ou seja, x + k - k = x.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor KleinIll » Sex Jun 21, 2013 19:18

Obrigado, Jhenrique.

Eu entendi quando pensei na própria função das funções dos arcos, que é retornar um ângulo a partir da relação trigonométrica correspondente, ou seja, se seno de 30º é 1/2, arcoseno de 1/2 é 30º.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor Jhenrique » Sex Jun 21, 2013 22:46

Exatamente! :y:

Vc pega o caminho da ida e daí em seguida o da volta... no final das contas vc não sai do lugar... xD
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: [Integral Dupla] Arcotangente

Mensagempor KleinIll » Sáb Jun 22, 2013 03:22

huahuahuahuahuahuahuahua vdd xD
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)