por manuoliveira » Seg Jun 17, 2013 10:18
Tenho que parametrizar a equação da esfera x² + y² + (z - 1)² = 1 em coordenadas polares...
Tentei fazer e obtive:
x = p . sen(fi) . cos(teta)
y = p . sen(fi) . sen(teta)
z = p . cos(fi)
0 <= p <= 2 . cos(fi)
0 <= teta <= 2pi
0 <= fi <= ??
Estou em dúvida em relação a variação de fi, se vai até pi/2 ou pi... Alguém pode me ajudar?
-
manuoliveira
- Usuário Parceiro

-
- Mensagens: 61
- Registrado em: Qui Abr 01, 2010 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coordenadas esféricas
por Marcos_Mecatronica » Seg Jul 08, 2013 01:36
- 1 Respostas
- 1437 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 21:13
Geometria Analítica
-
- Sistemas de coordenadas esfericas
por Jumarp » Sex Fev 25, 2011 22:58
- 4 Respostas
- 2927 Exibições
- Última mensagem por Jumarp

Dom Fev 27, 2011 12:37
Trigonometria
-
- Integral em coordenadas esféricas
por bruna106 » Sáb Abr 09, 2011 15:22
- 1 Respostas
- 2602 Exibições
- Última mensagem por LuizAquino

Seg Abr 11, 2011 11:04
Cálculo: Limites, Derivadas e Integrais
-
- [Coordenadas Esféricas] Integral Tripla
por raimundoocjr » Sáb Dez 14, 2013 00:22
- 0 Respostas
- 1485 Exibições
- Última mensagem por raimundoocjr

Sáb Dez 14, 2013 00:22
Cálculo: Limites, Derivadas e Integrais
-
- Valor de contorno em coordenadas esféricas
por manuoliveira » Seg Jun 30, 2014 02:13
- 0 Respostas
- 1069 Exibições
- Última mensagem por manuoliveira

Seg Jun 30, 2014 02:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.