• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração de raiz cúbica

Fatoração de raiz cúbica

Mensagempor Paula Noia » Sáb Jun 15, 2013 21:22

Olá pessoal,

Tenho a seguinte dúvida: como resolver a fatoração de raiz cúbica do limite abaixo ( sem usar a regra de L'Hopital):

\lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{\sqrt[2]{x}-1}

Sei que devo fatorar o numerador, só não estou conseguindo resolvê-lo, alguém poderia dar uma ajuda?
Paula Noia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jun 15, 2013 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Fatoração de raiz cúbica

Mensagempor young_jedi » Dom Jun 16, 2013 11:00

multiplicando em cima e em baixo

\lim_{x\to1}\frac{\sqrt[3]{x}-1}{\sqrt{x}-1}.\frac{x^{\frac{1}{2}}+1}{x^{\frac{1}{2}}+1}

\lim_{x\to1}\frac{(x^{\frac{1}{3}}-1)(x^{\frac{1}{2}}+1)}{x-1}

\lim_{x\to1}\frac{(x^{\frac{1}{3}}-1)(x^{\frac{1}{2}}+1)}{x-1}.\frac{x^{\frac{2}{3}}+x^{\frac{1}{3}}+1}{x^{\frac{2}{3}}+x^{\frac{1}{3}}+1}}

\lim_{x\to1}\frac{(x-1)(x^{\frac{1}{2}}+1)}{(x-1)(x^{\frac{2}{3}}+x^{\frac{1}{3}}+1)}

\lim_{x\to1}\frac{(x^{\frac{1}{2}}+1)}{(x^{\frac{2}{3}}+x^{\frac{1}{3}}+1)}=\frac{2}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Fatoração de raiz cúbica

Mensagempor Paula Noia » Dom Jun 16, 2013 11:29

Obrigada, Young! :)
Paula Noia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jun 15, 2013 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?