• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolvendo passo a passo

Resolvendo passo a passo

Mensagempor jeferson lopes » Qua Jun 12, 2013 01:15

Prezados, não consigo chegar ao resultado definido no gabarito. Por favor pode me ajudar na resolução dos seguintes integrais:
a) int(x^5+2x^4+3x-2)dx
jeferson lopes
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Mar 25, 2013 10:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Resolvendo passo a passo

Mensagempor e8group » Sex Jun 14, 2013 20:38

Pela linearidade da integral ,obtemos que \int (x^5 + 2x^4 - 2)dx =  \int x^5 dx + 2\int x^4 dx - 2\int dx .Cada integrando é algo semelhante com x^n  , n\in \mathbb{N} .Agora , \int x^ndx = \frac{x^{n+1}}{n+1} +c .Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.