• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]Reta paralela

[Derivada]Reta paralela

Mensagempor mthc10 » Qui Jun 06, 2013 22:03

Bem, deparei-me com a seguinte questão:
Em que ponto da curva x + \sqrt[2]{xy} + y = 1 a reta tangente é paralela ao eixo x ?

Derivei implicitamente e ficou assim:
1 + \frac{\sqrt[]{y}}{2\sqrt[]{x}} + \frac{\sqrt[]{x}}{2\sqrt[]{y}}.\frac{dy}{dx} + \frac{dy}{dx} = 0

Daí em diante não sei o que fazer...
Alguém pode me ajudar ?
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando

Re: [Derivada]Reta paralela

Mensagempor young_jedi » Sáb Jun 08, 2013 12:38

Amigo eu calculei a derivada implícita obtemos

1+\frac{1}{2\sqrt{xy}}\left(y+x.\frac{dy}{dx}\right)}+\frac{dy}{dx}=0

que pode ser expresso por

1+\frac{\sqrt{y}}{2\sqrt{x}}+\frac{\sqrt{x}}{2\sqrt{y}}\frac{dy}{dx}\right)}+\frac{dy}{dx}=0

ate ai tudo certo

nos temos que como a reta tangente é paralela ao eixo x então a derivada da função nesse ponto é 0 portanto

\frac{dy}{dx}=0

substitua esse valor na equação e encontre os pontos em que a equação é satisfeita
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.