• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área entre a curva

Área entre a curva

Mensagempor mayconf » Sex Mai 31, 2013 14:26

Olá alguém poderia me explicar como resolve essa questão, principalmente o gráfico

Achar a área entre a curva y={x}^{3}-{6x}^{2}+8x e o eixo dos x.
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Área entre a curva

Mensagempor e8group » Sex Mai 31, 2013 15:35

Para esboçar o gráfico da curva ,podemos encontrar a interseção do gráfico com O_x (O_y) ,isto é , tomar x^3 - 6x^2 +8x = x(x^2 -6x +8) = 0 (x=0) .Pela primeira derivada ,podemos determinar os pontos críticos da função e também estudar os intervalos de crescimento e decrescimento ,derivando a função novamente encontra-se os intervalos onde a função possui concavidade voltada para cima e para baixo .Estas informações são suficientes para esboçar o gráfico de tal curva .Sem integral é fácil ver que a área que pede-se é zero (veja geometricamente ) ,integrando de r_1 a r_2 isto se confirma (quais são os pontos r_1 , r_2 ?)

Acredito que seja isso .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.