• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Questão de limite tendendo à infinito

[Limite] Questão de limite tendendo à infinito

Mensagempor _bruno94 » Sex Mai 31, 2013 00:28

Boa noite!
Pessoal, não sei nem como começar este limite. A resposta é 1.
Alguém poderia me ajudar por favor?

\lim_{x \rightarrow\infty} ({{\sqrt{x^2 + x +1} - {\sqrt{x^2 - x +1} })
_bruno94
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 07, 2013 22:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [Limite] Questão de limite tendendo à infinito

Mensagempor Jhonata » Sex Mai 31, 2013 00:45

_bruno94 escreveu:Boa noite!
Pessoal, não sei nem como começar este limite. A resposta é 1.
Alguém poderia me ajudar por favor?

\lim_{x \rightarrow\infty} ({{\sqrt{x^2 + x +1} - {\sqrt{x^2 - x +1} })


Sugestão: Multiplique o numerador e o denominador pelo conjugado:

\lim_{x \rightarrow\infty} ({{\sqrt{x^2 + x +1} - {\sqrt{x^2 - x +1} })\frac{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}}{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}}

Opere o numerador, fazendo as devidas simplificações... Tente fazer, se não conseguir, poste que eu resolverei.

OBS: Só não resolvi agora aqui porque a página está muito lenta pra atualizar e não consigo visualizar minha edição no latex.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Limite] Questão de limite tendendo à infinito

Mensagempor _bruno94 » Sex Mai 31, 2013 00:55

Caro Jhonata,

Muitíssimo obrigado! Estava precisando mesmo só desse empurrãozinho inicial, rs. desenvolvi e cheguei na resposta corre. : )

Mais uma vez, obrigado.
Boa noite.
_bruno94
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 07, 2013 22:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [Limite] Questão de limite tendendo à infinito

Mensagempor Jhonata » Sex Mai 31, 2013 01:30

_bruno94 escreveu:Caro Jhonata,

Muitíssimo obrigado! Estava precisando mesmo só desse empurrãozinho inicial, rs. desenvolvi e cheguei na resposta corre. : )

Mais uma vez, obrigado.
Boa noite.


Disponha! É pra isso que estou aqui.

Bons estudos e uma boa noite também! :D
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.